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We review the consequences of intrinsic frustration of the orbital superexchange and of spin-orbital entangle-
ment. While the Heisenberg perturbing interactions remove frustration in the compass model, the lowest columnar
excitations are robust in the nanoscopic compass clusters and might be used for quantum computations. Entan-
gled spin-orbital states determine the ground states in some cases, while in others concern excited states and lead
to measurable consequences, as in the RVO3 perovskites. On-site entanglement for strong spin�orbit coupling
generates the frustrated Kitaev�Heisenberg model with a rich magnetic phase diagram on the honeycomb lattice.
Frustration is here re�ected in hole propagation which changes from coherent in an antiferromagnet via hidden
quasiparticles in zigzag and stripe phases to entirely incoherent one in the Kitaev spin liquid.
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1. Introduction

Over the last decade the spin-orbital physics devel-
oped to a very active and challenging �eld which uni-
�es frustrated magnetism and the phenomena in strongly
correlated electron systems. It arose from the pioneer-
ing ideas of Kugel and Khomskii who recognized that
spins and orbitals have to be treated on equal footing as
quantum operators in transition metal oxides with partly
�lled degenerate 3d orbitals at large Coulomb interaction
U [1]. In Mott and charge-transfer insulators, the a pri-
ori coupled spin-orbital degrees of freedom interact on
the three-dimensional (3D) cubic lattice via the superex-
change which follows from degenerate Hubbard model [2]
and takes the form of a generalized Heisenberg model [3],

H =
∑
〈ij〉‖γ

{
J

(γ)
ij (τi, τj)Si · Sj +K

(γ)
ij (τi, τj)

}
. (1)

Here the operators J
(γ)
ij and K

(γ)
ij determine the Heisen-

berg exchange between spins Si ≡ {Sxi , S
y
i , S

z
i } � they

depend on the bond direction γ = a, b, c in the cubic
lattice via the orbital operators {τi, τj} at sites i and j.
Spin-orbital models (SOMs) relevant for real materials
are quite involved and depend on whether the orbital de-
grees of freedom are eg or t2g. They follow from virtual
charge excitations along the bonds 〈ij〉 [3] and include the
multiplet structure of excited states. Quantum �uctua-
tions are of particular importance in t2g systems where
two orbitals are active along each bond [4, 5]. In the
case of large spins in the colossal magnetoresistance man-
ganites with S = 2 spins [6], spins and orbitals nearly
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decouple and the A-type antiferromagnetic (AF) and fer-
romagnetic (FM) phase are well understood [7]. In spite
of this decoupling of spins from orbitals, several questions
remain, as for instance the theoretical explanation of the
phase diagram of insulating manganites [8]. Even more
challenging are systems with small spins, with their prop-
erties determined by spin-orbital entanglement (SOE) [9].

While the intrinsic frustration of orbital interactions
may be released by emerging spin-orbital order, the
di�erence between spins and orbitals is best under-
stood by considering generic orbital models, as the two-
dimensional (2D) compass model [10] and the Kitaev
model on the honeycomb lattice [11]. Both may be de-
rived as limiting cases of magnetic interactions in the
Mott�Hubbard systems with partially �lled t2g levels and
with strong spin�orbit coupling [12] � then SOE oc-
curs on-site and leads to a rich variety of the low en-
ergy Hamiltonians that extrapolate from the Heisenberg
to a quantum compass or Kitaev model. Yet, these two
models are quite di�erent � the 2D compass model has
one-dimensional (1D) nematic order at �nite tempera-
ture [13], while the exact solution of the Kitaev model is
instead a disordered Kitaev spin liquid (KSL) with only
nearest neighbor (NN) spin correlations. Realistic 2D or
3D eg orbital models are also strongly frustrated, but or-
bitals order at �nite temperature following the strongest
interactions [14], while quantum e�ects are small.

The purpose of this paper is to summarize selected
recent developments presented at PM'14 Conference.
We discuss the phase diagram of the compass-Heisenberg
(CH) model in Sect. 2. Next we present a few examples
of SOE in 1D and 2D systems, and in the RVO3 per-
ovskites (where R=Lu,Yb,. . . ,La) in Sect. 3. The case of
strong spin�orbit coupling realized in Na2IrO3 and frus-
trated interactions on the honeycomb lattice are analyzed
in Sect. 4. The paper is summarized in Sect. 5.
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2. Frustration in compass models

Although the 2D Ising and compass model are in the
same universality class, they are quite di�erent � the
�rst one is classical, while in the second one two pseu-
dospin components {τxi , τzi } interact either along hori-
zontal or along vertical bonds by Jx and Jz, and the
ground state is highly degenerate and has 1D columnar
order. Evolution between these two limits was inves-
tigated by the multiscale entanglement renormalization
Ansatz and a quantum phase transition (QPT) from the
2D FM (AF) to nematic order was found close to the
compass limit [15].
Another QPT occurs in the compass model itself for in-

creasing |Jx|/Jz at |Jx| = Jz, when the 1D order switches
from vertical to horizontal bonds [16]. Understanding of
symmetries in the 2D compass model allows one to cal-
culate exact spectra of L × L clusters (with L = 6) by
mapping them to (L−1)× (L−1) clusters with modi�ed
interactions and to uncover the hidden dimer order [17].
The nematic order and the above hidden order in the

2D compass model are fragile and disappear in presence
of in�nitesimally small Heisenberg interaction ∝ I [18].
The CH model (we take Jz > 0),

HCH = Jx
∑
i,j

τzi,jτ
z
i+1,j + Jz

∑
i,j

τxi,jτ
x
i,j+1

+I
∑
i,j

τi,j · (τi,j+1 + τi+1,j) , (2)

has a very rich phase diagram (Fig. 1) and the symme-
try breaking involves the component ταi,j (α = x, z) with
the strongest interactions. As both AF and FM inter-
actions are possible, one �nds also C-type AF (C-AF)
order,with AF order between FM lines. The QPTs fol-
low mostly from symmetry and are thus given by straight
lines. Surprisingly, however, the nematic order survives

Fig. 1. Phase diagram of the CH model in the (Jx, I)-
plane for �xed AF interaction Jz = 1. Long-range spin
order in phases {Gz, Gx, C

′
z, Cx, C

′
x, Fx, Fy} (the sub-

script α = x, y, z indicates the order parameter), de-
picted in a corresponding inset, replaces the nematic
order for any �nite I. Square (Jx = Jz) and diamond
(Jx = −Jz) at the compass line (I = 0) indicate multi-
critical points. The quantum corrections contribute to
the QPTs between Fx and C′

z (Cx and Gz) phases (solid
lines). This �gure is reproduced from [18].

in the excited states in �nite clusters, with somewhat
lower quantum �uctuations for FM couplings Jα < 0.
Indeed, this case should be of more importance for pos-
sible applications in quantum computing as information
is easy to store by applying magnetic �eld when nematic
order is FM. Crucial for these applications is large gap
in spin excitations which occurs in the anisotropic XY Z
Heisenberg model (2). Therefore the columnar compass
excited states are the lowest energy excitations in a broad
range of parameters, when the perturbation ∝ I is weak
and the cluster size is nanoscopic [18]. Certain realiza-
tions of computing devices with protected qubits have
been implemented in the Josephson junction arrays [19],
while systems of trapped ions in optical lattices look also
promising [20].
In the 1D compass model the consequences of frus-

tration can be studied exactly, and one �nds a QPT
between two types of order on even/odd bonds at the
Jx = Jz point [21]. This model is quite distinct from
the orbital eg model for a zigzag (ZZ) chain where frus-
tration is weaker � recent studies uncover rather pecu-
liar behavior in the thermodynamic properties of the 1D
compass model which follow from highly frustrated in-
teractions [22]. An exact solution is also possible for a
compass ladder [23], which elucidates the nature of the
QPT from ordered to disordered ground state found in
the 2D compass model. Another type of frustration is
encountered in the 1D plaquette compass model, where
exact solution is no longer possible due to entanglement
which increases locally in excited states and coincides
with disorder [24].
The 2D compass model can be seen as the strong-

coupling limit of a spinless two-band Hubbard model
with nonequivalent hopping matrices for the bonds along
the a and b axis in the square lattice. Therefore, a hole
is not con�ned in the nematic state of the 2D compass
model [25], unlike in the 2D Ising limit or in the 2D t2g
orbital model [26]. The qualitative change of the hole
excitation spectra near the nematic state corresponds to
the QPT. An important common feature of the 2D or-
bital and compass model is that quantum �uctuations
are absent, and therefore the kinetic energy plays a par-
ticularly important role. It reorients the orbitals in the
2D alternating orbital (AO) state into ferro-orbital (FO)
ordered domain walls that allow for decon�ned motion
of holes [27], similar to FO order induced locally in a 1D
doped eg system (manganite) [28].

3. Entanglement in spin-orbital models

Unless spins are FM, one has to consider orbitals
coupled to spins in the framework of general SOMs.
In some cases the spin-orbital order is determined by the
Kanamori�Goodenough rules stating the spin and orbital
order are complementary, but in general SOE is expected.
One of the main di�culties is a reliable approach to en-
tangled ground states, as one can see on the example of
frustrated exchange on the triangular lattice, where su-
perexchange competes with direct exchange [29]. In the
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disordered ground state with dimer orbital correlations
SOE prevents any reliable predictions concerning the
magnetic interactions on superexchange bonds, and spin
correlations do not follow the sign of the spin exchange
obtained using the mean-�eld (MF) approach [30].
The SOE was discovered in 1D d1 and d2 systems with

t2g orbitals [31], but occurs also in eg systems, see below.
The Bethe�Ansatz solution of the SU(4) 1D model [32]
demonstrates that its ground state and excitations are
controlled by SOE. Recently another 1D model has been
solved exactly providing a beautiful example of SOE, the
SU(2)⊗XY ring [33],

HSU(2)⊗XY =
1

2
J

L∑
i=1

(
σi · σi+1+1

)(
τ+
i+1τ

−
i +τ−i+1τ

+
i

)
, (3)

where σl's are spin Pauli matrices, and τl's are orbital
Pauli matrices, and L + 1 ≡ 1. The spin transposition
operator, Xi,i+1 ≡ (σi · σi+1 + 1)/2, interchanges spins
on the bond 〈i, i+1〉, i.e., Xi,i+1σiXi,i+1 = σi+1. For an
open chain the spins and orbitals are decoupled by a uni-
tary transformation U [34], spins are disordered and the
ground state has a large degeneracy D = 2L. Closing the
spin-orbital chain to a ring (3) causes surprising changes
in the spin part of the lowest-lying eigenstates. All the
eigenstates are grouped in multiplets labeled by quasi-
momenta K, and the ground state has K = 0 (Fig. 2).
Therefore the topological order emerges and the ground
state degeneracy drops to D = 2L+1/L [33].
When the orbital interactions have SU(2) symmetry,

HSU(2)⊗SU(2)=
1

2
J
∑
〈ij〉

(
Si · Si+1+x

)(
τi · τi+1+y

)
, (4)

one considers instead a 1D SOM (4) with a higher SU(4)
symmetry at x = y = 1/4. Recently its phase di-
agram was investigated numerically for J < 0 [35].
One �nds four phases, with: FM/FO, AF/FO, AF/AO,
and FM/AO order. The FM/FO ground state is dis-
entangled, but SOE occurs in excited states. Spin and

Fig. 2. Artist's view of the spin-orbital decoupling in
the ring (3) caused by the transformation U . The initial
spin-orbital chain (top) splits into purely orbital (left)
and spin (right) segments. The spin part consists of two
halves carrying quasimomenta K1 and K2. The orbital
part feels an external magnetic �eld B perpendicular to
the ring (arrow). This �gure is reproduced from [33].

orbital excitations are entangled in the continuum, as
well as a spin-orbital quasiparticle (QP) and bound state.
A useful tool to investigate SOE in all these states is von
Neumann entropy spectral function which gives the high-
est entanglement for the latter composite spin-orbital ex-
citations, the QP and the bound state [35]. The scaling of
the von Neumann entropy with system size is logarithmic
and qualitatively di�erent from other spin-orbital excita-
tions from the continuum, where the entropy saturates.
Another example of SOE is found in the Kugel�

Khomskii (KK) SOM, where exotic types of magnetic
order occur [36, 37]. The 2D KK model describes the
superexchange ∝ J = 4t2/U in K2CuF4 between holes
with S = 1/2 spins in eg orbitals (τ = 1/2),

HKK=
1

2
J

∑
〈ij〉||γ=ab

{
−r1

(
Si · Sj+

3

4

)(
1

4
−τγi τ

γ
j

)
+r2

(
Si · Sj−

1

4

)(
1

4
−τγi τ

γ
j

)
+(r2+r4)

(
Si · Sj−

1

4

)(
1

2
−τγi

)(
1

2
−τγj

)}
. (5)

where τ ci = τzi = σzi /2, τ
a,b
i = (−τzi ±

√
3τxi )/4, while

r1 = 1/(1−3η), r2 = 1/(1−η), and r4 = 1/(1+η) follow
from the multiplet structure and depend on Hund's ex-
change η ≡ JH/U . The second parameter extending the
model (5) is the orbital splitting, Hz = Ez

∑
i τ
z
i .

The phase diagram of the 2D KK model (5) ob-
tained by two variational methods, a cluster MF (CMF)
and entanglement renormalization Ansatz (ERA), con-
tains the exotic magnetic order (ortho-AF phase in
Fig. 3) between the AF and FM phase for Ez < 0 and

Fig. 3. Phase diagram of the 2D KK model in the
CMF and ERA (solid and dashed lines). Insets indi-
cate spin-orbital con�gurations on a 2× 2 plaquette �
x-like (τ ci = −1/2) and z-like (τ c,ai = 1/2) orbitals are
accompanied either by AF spin order (arrows) or by spin
singlets (in the PVB phase). The FM phase has either
a two-sublattice AO order or FOz order (FMz). An ex-
otic ortho-AF phase separates the AF and FM phases.
This �gure is reproduced from [36].
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η ≈ 0.155 [36], where the NN spin exchange changes
sign. As shown in the perturbation theory which starts
with 3z2 − r2 orbitals occupied by holes in the ground
state and treats HKK as perturbation, the next near-
est neighbor (NNN) and third nearest neighbor (3NN)
spin exchange is necessary to understand the origin of
the four-sublattice AF phase (Fig. 3). This ground state
is stabilized by local entangled spin-orbital excitations to
spin singlets and x2 − y2 orbitals [36]. Exotic magnetic
order is also found in a bilayer and in the 3D KK model
� it follows again from SOE [37].

In the RVO3 perovskites SOE in excited states de-
cides about the properties observed at �nite temperature.
While the spins and orbitals and their energy scales are
well separated in the RMnO3 perovskites [8], the struc-
tural (orbital) and magnetic transition are here at rather
similar temperature in RVO3 [38]. The orbital orbital
order (OO) transition temperature TOO = 143 K is al-
most the same as the Néel temperature TN1 = 141 K in
LaVO3, and increases with decreasing ionic radius rR.
Next it saturates and decreases from YVO3 to LuVO3

whereas TN1 decreases monotonically along the RVO3 se-
ries. A theoretical explanation of these phase transitions
requires the full superexchange model given in [39], sup-
plemented by the orbital�lattice interactions [40],

Horb = Ez
∑
i

e iRiQτzi + Vab
∑
〈ij〉‖ab

τzi τ
z
j + geff

∑
i

τxi . (6)

The leading term in the superexchange along the c axis
is similar to Eq. (4), with spin S = 1, x = 1, y = 1

4 ,
and orbital τi ≡ {τxi , τ

y
i , τ

z
i } operators (τ = 1/2) for

the active t2g orbitals, yz and zx. The SOE occurs only
along the bonds 〈ij〉 ‖ c as xy orbitals are occupied at
each site and thus orbital �uctuations are blocked along
the bonds in the ab planes. The crystal-�eld splitting
term ∝ Ez supports C-type OO and alternates in the
ab planes, with Q = (π, π, 0). Actually, it competes with
the superexchange which induces instead the observed G-
type OO [38]. The Jahn�Teller term ∝ Vab supports as
well AO order in the ab planes, while along the c axis FO
order is favored by a similar interaction [40], neglected
for simplicity in Eq. (6).

Due to SOE, which is activated in the excited states
at �nite temperature, it is crucial to employ a CMF ap-
proach, similar to the one used in KK models [37]. In this
approach one determines self-consistently the MF order
parameters {〈Szi 〉, 〈τzi 〉, 〈τxi 〉, 〈Szi τzi 〉} by coupling a clus-
ter along the c axis to its neighbors via the MF terms
adjusted to the C-AF/G-AO structure. The orbital �uc-
tuations along the c axis are very important and reduce
signi�cantly the orbital order parameter 〈τzi 〉.
The structural transition at TOO is explained as fol-

lows. In LaVO3 the orthorhombic distortion u ≡ (b−a)/a
is small, where a and b are the lattice parameters of the
Pbnm structure. Then the values of TN1 and TOO are
used to establish the variation of model parameters with
increasing lattice distortion u. All the parameters inHorb

increase with increasing u due to decreasing ionic size in

Fig. 4. The orbital TOO and Néel TN1 transition tem-
perature (solid lines) for varying ionic size in RVO3, as
obtained from the theory, and experimental points [38]
(full and empty circles). Dashed lines indicate TOO and
TN1 obtained under neglect of orbital-lattice coupling
(geff = 0). The inset shows the GdFeO3-type distor-
tion, with the rotation angles ϑ and ϕ as in YVO3. This
�gure is reproduced from [40].

RVO3 (Fig. 4). This increase is much faster for geff than
for Ez and Vab, so from LaVO3 to SmVO3 the latter two
parameters alone determine the increase of TOO. When
geff becomes larger, however, this term acting as a �eld
on the orbitals suppresses partly orbital order, 〈τzi 〉, and
the orbital polarization, 〈τxi 〉, increases following local
distortions. This reduces TOO from YVO3 to LuVO3.
At the same time TN1 decreases due to the changes in
the orbital order. This decrease would not occur in the
absence of lattice distortion (at u = 0 implying geff = 0)
which manifests again strong SOE in this system (Fig.
4). We conclude that the lattice distortion u, which in-
creases from La to Y by one order of magnitude, modi-
�es orbital �uctuations and in this way tunes the onset
of both orbital and spin order in the cubic vanadates.

There are more experiments which indicate strong SOE
in the vanadium perovskites at �nite temperature [9].
Here we mention brie�y only the dimerization observed
in the magnon spectra of the intermediate temperature
C-AF phase in YVO3 [41]. Spin exchange interactions
dimerize as a consequence of the instability of the 1D
orbital chain along the c axis. Of course, this mechanism
cannot operate at T = 0 as then the spins have rigid FM
order along the c axis. But thermal �uctuations in the
spin system weaken spin correlations and dimerization is
the way to lower the free energy. We emphasize that the
dimerization occurs here simultaneously in both channels
but the dimerization in the FM chain (for spins S = 1)
is much stronger than in the AO chain [42].

Summarizing, the SOE in the excited states is visible
in the magnetic and optical properties of the vanadium
perovskites, and any theoretical treatment has to go be-
yond a simple picture established by the Goodenough�
Kanamori rules, and one has to go beyond this paradigm
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also in alkali RO2 hyperoxides (with R = K,Rb,Cs) [43] or
in �nite clusters [44]. In the case of quantum states, these
rules have to be generalized as follows: In the wave func-
tions a component with spin�singlet and orbital�triplet
coexists with a component with spin�triplet and orbital�
singlet. SOE is also of importance for the pairing mech-
anism in Fe-pnictides [45]. More examples of SOE are
presented in [9].

4. Strong spin�orbit coupling

In systems with strong spin�orbit coupling, as in iri-
dates, on-site SOE dominates and entangles locally spins
and orbitals. In this case one has to determine �rst
e�ective spins with eigenstates being linear combina-
tions of spin-orbital components [12]. The interactions
at low-energy between such e�ective S = 1/2 spins are
in general quite di�erent from superexchange in spin-
orbital models. Projecting the microscopic interactions
on the Kramers doublets gives strongly frustrated inter-
actions [12]: (i) the 2D compass model on the square
lattice, and (ii) the Kitaev model on the honeycomb
lattice. Kitaev model is a realization of a spin liquid
with only NN spin correlations on a nonfrustrated lat-
tice [11]. Similar to the Kitaev model, the triangular
lattice of magnetic ions in an ABO2 structure (as for in-
stance in LiNiO2 [46]) has Ising-like interactions ∝ Sαi Sαj
with α = x, y, z for three nonequivalent bond directions
in the lattice. In what follows we focus on the magnetic
interactions on the honeycomb lattice which attracted a
lot of attention recently.
Here we consider the Kitaev�Heisenberg (KH) t-J

model (J > 0) on the honeycomb lattice with two sub-
lattices A and B [47], realized in Na2IrO3 [48, 49],

HtJ ≡ t
∑
〈ij〉σ

c†iσcjσ+JK

∑
〈ij〉‖γ

Sγi S
γ
j +J1

∑
〈ij〉

Si · Sj

+(1−α)
{
J2

∑
{ij}∈NNN

Si · Sj+J3

∑
{ij}∈3NN

Si · Sj
}
, (7)

with FM Kitaev and AF Heisenberg NN exchange,

JK ≡ −2Jα, J1 ≡ J(1− α). (8)

The parameter 0 ≤ α ≤ 1 interpolates between the
Heisenberg and Kitaev model. The NN Kitaev (JK) and
Heisenberg (J1) interactions compete in Eq. (7) and the
spin order changes with increasing α. The signs of these
two competing terms (8) are opposite and both AF/FM
and FM/AF Heisenberg/Kitaev were studied [50]. Such
spin interactions were proposed to describe the Mott-
insulating layered iridates [51] � for J1 > 0 also NNN
(J2) and 3NN (J3) Heisenberg terms are necessary as
only then the experimentally observed ZZ magnetic or-
der in Na2IrO3 [48] is reproduced. The term ∝ t stands
for the kinetic energy of composite fermions with pseu-
dospin �avor σ in the restricted space which contains no
double occupancies.
Consider �rst a spin order parameter for a phase Φ,

S2
Φ ≡

12

N2

∑
ij

e ik·(Ri−Rj)〈(SziA ± SziB)(SzjA ± SzjB)〉), (9)

where the average is calculated in the ground state |Φ〉.

Investigating SΦ allows one to identify the symmetry
breaking and long-range spin order studying �nite clus-
ters where the symmetry broken states do not occur [52].
In the above de�nition the signs of the spin components
SzjB on sublattice B and the vector k are selected dif-
ferently, depending on the spin order in the considered
magnetic phase Φ [53]. Investigating such spin correla-
tions does not su�ce to identify the disordered KSL, with
�nite NN spin correlations. Here we evaluate instead the
Kitaev invariant [11] for a single hexagon C6,

L ≡ 26

〈∏
i∈C6

Sγi

〉
. (10)

At �xed J3 = 0.4J one �nds �rst large AF spin corre-
lations SAF for α < 0.5, and next the ZZ phase is favored
for α > 0.5, as indicated by large SAF or SZZ (Fig. 5a).
The AF↔ ZZ transition at α = 0.5 follows from symme-
try and is independent of the cluster size. Both SAF and
SZZ decrease for α > 0.85 when the ground state of the
KH model (7) approaches the KSL at α→ 1, and L → 1.
The phase diagram of the KH model in the (α, J3/J)

plane was determined [53] by analyzing spin order pa-
rameters, S2

Φ , and the �delity susceptibility. It contains
four magnetic phases at J2 = 0, the AF, ZZ, stripe (ST)
phase, and the KSL disordered phase (Fig. 5b). The AF
phase is stable for small α, while at intermediate α it
is replaced by two other magnetic phases, ST and ZZ.
These types of order with coexisting AF and FM bonds
manifest enhanced frustration for increasing Kitaev in-
teractions. The gapless KSL takes over at α > 0.85 and
is also stable in presence of lattice distortions [54]. As
shown in the CMF approach, the AF phase is also desta-
bilized by increasing NNN interactions J2 [55]. The phase
diagram of the KH model (7) is investigated by several
groups at present; further results are given in [56].
Motivated by strongly incoherent photoemission (PES)

spectra found in Na2IrO3 [49], we have used the Lanc-
zos diagonalization of the N = 24 site cluster with peri-
odic boundary conditions to study the evolution of hole

Fig. 5. Magnetic phases in the KH model Eq. (7)
shown in: (a) spin correlations SΦ (9) representing the
AF and ZZ order (Φ=AF, Φ=ZZ), and the Kitaev in-
variant L (10) for J2 = 0, J3 = 0.4J ; (b) phase diagram
in the (α, J3/J) plane (points) for J2 = 0, with AF,
ST, ZZ spin order and KSL disordered phase. The in-
sets show spin order (arrows) or disorder (circles). This
�gure is reproduced from [53].
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spectral functions for varying interactions in the KH
model (7) [53]. Indeed, the spectra observed in PES for
Na2IrO3 are rather unexpected as in spite of ZZ spin or-
der, no QPs and only incoherent spectra are observed.
A systematic study of hole spectral properties in this
magnetic phase requires to consider two distinct Green's
and two spectral functions [57]: (i) full spectral function
which corresponds to the PES, and (ii) the sublattice
spectral function, i.e., when a hole moves over sites of
one sublattice only. One �nds that in the ZZ phase the
QPs appear only in the sublattice spectral function while
they are hidden in the PES spectral function. This result
is independent of the model used to stabilize the ZZ or-
der and may be considered as following from symmetry of
the honeycomb lattice which supports destructive inter-
ference in the PES spectral function at low energy [57].
As expected, one �nds coherent QPs in the PES spec-

tral function for the AF phase at weakly frustrated in-
teractions, but a similar interference and hidden QPs
are found in the ST phase [53]. It is interesting to ask
what will happen when spin iteractions are maximally
frustrated and the ground state is the KSL. A naive ar-
gument that in the absence of robust spin order, quan-
tum spin �uctuations will not couple to the moving hole
to generate coherent propagation turns out to be cor-
rect, and using exact diagonalization one �nds indeed no
coherent QPs here, also in the sublattice spectral func-
tion. This result was derived by analyzing the sublattice
spectral function in absence of spectral broadening [53],
Ad(k, ω) =

∑
n αd(k, ωn)δ(ω−ωn). The spectral weights

{αd(k, ωn)} are totally incoherent at low excitation en-
ergies ωn, except at the k = Γ point in the momentum
space [53]. This important result follows from the pres-
ence of vortex gap in the Majorana excitations [53] and
implies that Ising-like NN spin correlations in the KSL
phase are insu�cient to generate coherent hole propaga-
tion and thus carrier motion in the lightly doped KSL is
non-Fermi liquid like. This analysis allows one to con-
clude [53] that gapless Majorana excitations are respon-
sible for the absence of QPs in the close vicinity of the
Γ point and, on the contrary to some earlier claims, the
weakly doped KSL is not a Fermi liquid.

5. Summary and outlook

We have shown that orbital superexchange interac-
tions have lower symmetry than spin ones � they are
directional and intrinsically frustrated, also on geometri-
cally nonfrustrated lattices. This leads to nematic order
and provides new opportunities for quantum computing.
The nematic order in the 2D compass model is robust and
survives in excited states which could be used for stor-
ing information in nanoscopic systems, while the Heisen-
berg perturbing interactions remove frustration and trig-
ger long-range order in the ground state.
In spin-orbital systems frustration in the orbital chan-

nel is frequently removed by spin order which modi�es
the exchange in the orbital subsystem. Nevertheless,
SOE is generic in these systems and may have measur-
able consequences at �nite temperature, as in the RVO3

perovskites. Here, similar to 1D spin-orbital model sys-
tems, frustration and entanglement occur simultaneously.
In contrast, in systems with strong spin�orbit interac-
tion entanglement comes �rst and generates frustration
as shown on the example of the KH model on the hon-
eycomb lattice. We have also shown that the spectral
functions obtained from the KH model with frustrated
interactions describe hidden QPs in the ordered phases
with coexisting FM and AF bonds, while the Ising-like
short-range spin correlations in the KSL are insu�cient
to generate coherent hole propagation.
We have presented only selected recent developments

in the �eld of spin-orbital physics. Among others, we
would like to mention models which describe interfaces
or heterostructures, and hybrid bonds between ions with
di�erent �llings of the d shell. For instance, d3 impurities
generate orbital dilution and frustrated interactions in d4

systems. Having no orbital degree of freedom, they are
able to modify locally orbital order, and the actual spin-
orbital order in ruthenates might even totally change at
�nite doping [58]. Summarizing, the spin-orbital physics
is a very active and fast developing �eld of frustrated
magnetism with numerous challenging and timely prob-
lems, both in the experiment and in the theory. We apol-
ogize for not including here many other interesting devel-
opments in this �eld due to the lack of space.
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