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The �Higgs� Amplitude Mode in Weak Ferromagnetic Metals
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Using ferromagnetic Fermi liquid theory, Bedell and Blagoev derived the collective low-energy excitations of
a weak ferromagnet. They obtained the well-known magnon (Nambu�Goldstone) mode and found a new gapped
mode that was never studied in weak ferromagnetic metals. In this article we have identi�ed this mode as the
Higgs boson (amplitude mode) of a ferromagnetic metal. This is identi�ed as the Higgs since it can be shown
that it corresponds to a �uctuation of the amplitude of the order parameter. We use this model to describe the
itinerant-electron ferromagnetic material MnSi. By �tting the model with the existing experimental results, we
calculate the dynamical structure function and see well-de�ned peaks contributed from the magnon and the Higgs.
Our estimates of the relative intensity of the Higgs amplitude mode suggest that it can be seen in neutron scattering
experiments on MnSi.
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1. Introduction

The emergence of low-energy excitations in systems
with spontaneously broken symmetry plays a very im-
portant role in our fundamental understanding of na-
ture. There are two types of fundamental excitations
(particles) that may be present in the �eld theory descrip-
tions of these spontaneously broken symmetries: massless
Nambu-Goldstone bosons (magnons, or phase modes)
and massive Higgs bosons (amplitude modes). Let the
order parameter that describes a state with a sponta-
neously broken symmetry be φ(x) = ρ(x)e iθ(x). Then,
in the ground state we have 〈φ(x)〉 = ρ0 e iθ0 , where �-
nite values for θ0 and ρ0 correspond to a broken symme-
try. The two fundamental excitations are the Nambu�
Goldstone boson, which corresponds to �uctuations of
the phase of the order parameter with �xed amplitude,
ρ0, and the Higgs boson, with �uctuations of ρ(x) with
the phase �xed at θ0.
The understanding of the amplitude mode is partic-

ularly important for the standard model of elementary
particle physics [1]. Recent experiments from LHC [2, 3]
which detected Higgs-like particles has drawn much at-
tention to this subject. This Higgs-like mode was pre-
dicted theoretically and found experimentally in many
condensed matter systems. This includes incommen-
surate charge-density-wave (CDW) states [4], supercon-
ducting systems [5�8], and lattice Boson systems with
super�uid and Mott insulator transition [9�13], which
can be realized by ultracold bosonic atoms on an opti-
cal lattice.
In this article we have identi�ed the amplitude mode

in another well-known system with spontaneously bro-
ken symmetry, a ferromagnetic metal. The Nambu�
Goldstone magnon mode in ferromagnetic systems was
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�rst predicted by Bloch [14] and Slater [15], and observed
in iron in a neutron scattering experiment [16]. Abrikosov
and Dzyaloshinskii [17] �rst predicted spin waves in fer-
romagnetic Fermi liquids using a ferromagnetic Fermi
liquid theory (FFLT) for itinerant ferromagnets. This
approach was put on a more microscopic foundation in
the work of Dzyaloshinskii and Kondratenko [18]. Moriya
and Kawabata also developed a band theory (MK theory)
to study the long wavelength spin �uctuation in itinerant
ferromagnetic systems [19]. Bedell and Blagoev [20] gen-
eralized the FFLT and they discovered a new collective
mode of the system; they found a mode with a gap in the
excitation spectrum. We have identi�ed this mode as the
Higgs amplitude mode of a ferromagnetic metal.

2. Model

We begin by quickly describing the FFLT approach
used by Bedell and Blagoev [20], in the small magnetic
moment limit, to study the collective excitations in a fer-
romagnetic metal. We then argue that the massive mode
is indeed an amplitude mode. To estimate the collective
modes' frequencies we use a simple one-band description
with a spherical Fermi surface for the itinerant-electron
ferromagnet MnSi. By �tting existing experimental re-
sults we can pin down some of the Landau parameters
and use them to calculate dynamical structure function,
S(q, ω). As we will see there are two sharp peaks in
S(q, ω) corresponding to the two collective modes, the
well-known Nambu�Goldstone mode (sometimes referred
to as the transverse spin wave) and a gapped Higgs am-
plitude mode. From our estimates of the spectral weight
of the amplitude mode it should be observable in neutron
scattering experiments.
We consider a three-dimensional weak ferromagnetic

material below its Curie temperature. According to
FFLT, in the weak moment limit, the system can
be described by the quasi-particle distribution function
npαα′(r, t) = np(r, t)δαα′ + mp(r, t) · σαα′ , and the
quasi-particle energy function εpαα′(r, t) = εp(r, t)δαα′ +
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hp(r, t) · σαα′ [17, 21], with mp the quasi-particle mag-
netization and hp = −B + 2

∑
p′ fapp′m′p the e�ective

magnetic �eld which includes the external magnetic �eld
B and the internal magnetic �eld generated by quasi-
particle interactions fapp′ . Here and throughout the pa-

per we set µmag = γ~
2 = 1 and ~ = 1. The quasi-

particle interaction can be expanded in Legendre polyno-
mials, and in this weak moment limit, it can be treated
as spin rotation invariant [22], so that it can be sepa-
rated into the spin symmetric and spin antisymmetric
parts N(0)fσσ′pp′ =

∑
l(F

s
l + F al σ · σ′)Pl(p̂ · p̂′). Here,

N(0) is the average density of states over the two Fermi
surfaces and in the ferromagnetic phase, F a0 < −1.
This state can be said to be protected by the general-
ized Pomeranchuck stability condition [23, 24], and its
ground state is described by the distribution function
m0

p = −m0∂n
0
p/∂ε

0
p, where m0 is the equilibrium mag-

netization divided by N(0). Fluctuations about equi-
librium, δmp, are described by a linearized spin kinetic
equation [21]:

∂δmp(r, t)

∂t
+ vp ·∇(δmp(r, t)−

∂n0p
∂ε0p

δhp(r, t)) =

−2(m0
p(r, t)× δhp(r, t) + δmp(r, t)

×h0
p(r, t)) + I[mp], (1)

where h0
p = −B + 2

∑
p′ fapp′m

′
p and δhp = −δB +

2
∑

p′ fapp′δm
′
p are the e�ective equilibrium �eld and its

�uctuation, respectively. Here, a small magnetic �eld
δB is set transverse to the equilibrium magnetization.
A direct way to obtain the dispersions is to take the
limit of free oscillations of Eq. (1) by setting B = 0
and δB = 0, and looking at the low temperature limit
for which the collision integral I[mp] can be ignored.
This is the quantum spin hydrodynamic regime whose
details of the derivation are more explicit in Ref. [20].
In addition to the free oscillation limit, it is also pos-
sible to use Eq. (1) to calculate the response function
χ(q, ω) that relates δB with its induced transverse re-
sponse δm =

∑
p δmp (δm = χ(q, ω)δB) and from it the

dynamical structure function S(q, ω) = −Im[χ(q, ω)]/π.
The calculations are done by projecting out the l compo-
nents of both the kinetic equation and the spin density
distribution function δmp = −(∂n0p/∂ε

0
p)
∑
l νlPl(p̂ · ẑ).

We will return to the full calculation of S(q, ω) a lit-
tle later.

We can use the kinetic equation to derive the conti-
nuity equation for the magnetization and the equation of
the spin current de�ned as jσi (r, t) =

∑
p vpimp(r, t)(1+

F a1 /3). The dispersions found using the free-oscillation
limit are

ω±1 (q) =
c2s
ω±

q2, (2)

ω±2 (q) = ω± − c2s
ω±

q2, (3)

where ω± = ±2m0 |F a0 − F a1 /3|, c2s = |1 + F a0 | (1 +
F a1 /3)v2F/3, and vF is the Fermi velocity on the average

Fermi surface. The ± signs correspond simply to the dif-
ferent precessional directions so that we e�ectively have
two modes.

Before we go to the full calculation of S(q, ω), we can
extract the basic physics from these results. The �stan-
dard model� of a ferromagnetic metal is often referred to
as the Stoner model and it can best be characterized by
its elementary excitations. To begin with there are the
spin 1/2 particle-like excitations (sometimes referred to
as quasi-particles), consisting of up spins (σ =↑), major-
ity spins, and down spins (σ =↓), minority spins. In the
presence of spontaneous long range ferromagnetic order
there are also gapless transverse spin waves (the Nambu�
Goldstone mode). This mode has a total spin of ±1 as-
sociated with the two precessional directions of the equi-
librium magnetization. For simplicity, in what follows we
will consider only the spin +1 excitations. If we think in
terms of the order parameter for the ferromagnetic state
this would be a �uctuation of the phase (rotation about
the z axis in space) with the magnitude of the order pa-
rameter �xed at its equilibrium value, m0. In addition
to these spin waves, there are other spin +1 excitations
in the Stoner model that correspond to �uctuations in
the magnitude of the order parameter at a �xed phase.
At q = 0 these excitations have a gap in their spec-
trum usually referred to as the Stoner gap. For q 6= 0,
these spin +1 excitations have a range of frequencies
(shaded region shown in Fig. 1) and these are the inco-
herent particle�hole excitations, ω±p−h = ∓2m0F

a
0 +q ·vp.

These excitations are not collective, thus, there is no
Higgs amplitude mode in the Stoner model: When the
momentum-transfer, q, is large enough the Goldstone
mode decays into these incoherent particle�hole excita-
tions (Landau damping), while the gapped excitations
are Landau damped for all values of q.

The FFLT description of Bedell and Blagoev [20] for
small momentum transfers is qualitatively the same as
the Stoner model if we set all Landau parameters, F al =
0, for all l > 0, and keep only F a0 . If we keep only
the l = 0 and l = 1 moments of the spin density dis-
tribution function (ν0 and ν1), we get the two modes,
Eqs. (2) and (3). The �rst mode is just the Nambu�
Goldstone mode and the second mode has a gap in its
spectrum, where at q = 0, it is just the Stoner gap,
ω+
2 = 2 |F a0 |m0. This excitation causes a change in the

magnitude (amplitude) of the order parameter since it
is a spin �ip process. In the spin �ip process we take
a down spin and �ip it to an up spin causing an ampli-
tude �uctuation since we decreased the number of down
spins while increasing the number of up spins during this
�uctuation. These �uctuations of the amplitude of the
order parameter could have been the Higgs amplitude
mode, however, in the Stoner model this mode sits in the
particle�hole continuum and it is Landau damped; it is
not a collective mode.

The Fermi liquid description of the collective modes of
a ferromagnetic metal [20] goes beyond the Stoner model
described above in a simple but most important way.
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As can be seen from Eqs. (2) and (3) there are two modes,
the �rst one is the Goldstone mode. The second mode has
a gap in its spectrum given by ω+

2 = 2m0 |F a0 − F a1 /3|.
The introduction of the higher order Fermi liquid pa-
rameter F a1 is responsible for the propagation of the
mode. This parameter couples the momentum of the
quasi-particle to its spin and it is responsible for pushing
the mode out of the particle�hole continuum. Most of the
spectral weight in this propagating mode comes from the
incoherent particle�hole continuum. As we noted earlier
the particle�hole continuum is made up from incoher-
ent spin �ip (spin +1) excitations and they correspond
to an amplitude �uctuation. This mode can sit above
the Stoner gap for positive F a1 and below the Stoner gap
for negative F a1 , with the lower bound, F a1 > −3 [24].
It propagates and is built out of �uctuations that change
the amplitude of the order parameter, thus it is the fer-
romagnetic metal example of the Higgs amplitude mode.
Also since it couples to the spin �uctuations it can be
seen in the transverse spin �uctuation response function
that could be measured in a neutron scattering experi-
ment, as we see below.

3. Response function

We calculate the dynamical spin�spin response func-
tion based on the kinetic equation, Eq. (1). Here we
go beyond the hydrodynamic approach by keeping νl for
arbitrary values of l and the Landau parameters F al up
to l = 1. The response function obtained is given by

χ(q, ω)

N(0)
=

−χ+
0 +

2m0F
a
1

qvF(1+Fa
1 /3)

χ+
1

1− F a0 χ
+
0 − ω

qvF

Fa
1

1+Fa
1 /3

χ+
1

, (4)

where

χ+
0 (q, ω) = −1 +

1

2qvF

×[ω + 2m0(1 + F a0 )] ln

(
ω + 2m0F

a
0 + qvF

ω + 2m0F a0 − qvF

)
, (5)

χ+
1 (q, ω)=− 1

qvF
[ω+2m0(1+F a0 )]

×
[
1− 1

2qvF
(ω+2m0F

a
0 ) ln

(
ω+2m0F

a
0 +qvF

ω+2m0F a0−qvF

)]
.(6)

From the response function, we obtain the dynamic
structure function S(q, ω) = −Im[χ(q, ω)]/π, whose
poles will give, for small qs, ω+

1 (q) and ω̄+
2 (q) = ω+ −

(
c2s
ω+ − α)q2 with α = 2v2F(1 + 3/F a1 )/15m0, correspond-
ing to the two collective modes derived in hydrodynamic
approach respectively. In [20] it was noted that ν2 is
of the same order of ν1 while νl � ν2 for all l ≥ 3.
In our calculation we look for the pole of the response
function, which includes all νls. A comparison to the
modes obtained in Ref. [20] with the hydrodynamic ap-
proach is illustrated in Fig. 1. It shows, as expected,
agreement of the two results over a considerable range of
small values for q. However, the full calculation of S(q, ω)
captures additional features, as, e.g., seen in Fig. 2
where the value of F a1 is varied to illustrate the building
of the Higgs mode out of the particle�hole continuum.

Fig. 1. Collective modes together with the p�h con-
tinuum in the case (a) F a

0 = −1.18, F a
1 = −0.84 and

(b) F a
0 = −1.16, F a

1 = 1.32. The green-dashed lines
represent the dispersion calculated using the hydrody-
namic approach, Eqs. (2) and (3) while the blue-solid
lines are the dispersions taken from the poles of the re-
sponse function. Plots obtained by using parameters �t-
ted to early experiments (see text), including the follow-
ing: N(0) = 6.4× 1029 eV−1m−3, kF = 1.23 Å−1, m∗ =
39.3m e, EF = 0.147 eV, and vF = 3.63× 104 ms−1.

Fig. 2. Dynamic structure function for di�erent val-
ues of of F a

1 . As F a
1 is switched on, the Higgs builds

out of the particle�hole continuum (the wider peak in
the middle) while the Goldstone mode remains approx-
imately unchanged.

As we noted earlier, all of the spectral strength for the
Higgs mode comes from the continuum, which makes the
observation of the continuum itself di�cult, as it is known
from neutron scattering experiments.
The itinerant ferromagnetic material MnSi is a very

good candidate for the experimental search of the Higgs
mode. MnSi is metallic and it behaves ferromagnetically
in a magnetic �eld [25�28]. Neutron scattering leads to
the magnon dispersion [29], ω(meV) = 0.13 + 52q2(−2)
and speci�c heat measurement gives [30, 31] (C/T )0 =
85 × 10−4 cal/(K2mole). From the band structure cal-
culation [32], we know the density of the quasi-particles.
We �t the experimental data to a single band descrip-
tion with the quadratic dispersion E = ~2k2/2m∗, which
keeps the volume of the Fermi surface unchanged. We ob-
tain all the parameters we need and a relationship be-
tween two of the Landau parameters, F a1 = −(375 +
321F a0 )/(143 + 125F a0 ). Since the system is weakly
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ferromagnetic, F a0 should be close to and smaller than
−1, and F a1 depends on F a0 very sensitively in this re-
gion. We do not have extra experimental results to pin
down the sign of F a1 , so we take the values of (F

a
0 , F

a
1 ) to

be (−1.16, 1.32) and (−1.18, −0.84) as typical examples
to show the two collective modes in these two cases.

Fig. 3. Dynamical structure function showing both the
collective modes and the p�h continuum in the cases of
F a
0 = −1.16, F a

1 = 1.32 (a) and F a
0 = −1.18, F a

1 =
−0.84 (b).

Figure 3 shows the dynamic structure function in
the two typical cases for di�erent momentum transfer.
We can clearly see the two sharp peaks contributed by
the two collective modes and the wider one coming from
the p�h continuum.

4. Summary

Following from the earlier work of Bedell and
Blagoev [20], we used the ferromagnetic Fermi liquid the-
ory to study the collective modes in a weak ferromagnetic
metal. In addition to the well-known magnon (the phase
mode), a gapped mode was also found [20]. We have
shown here that this gapped mode corresponds to the
Higgs amplitude mode. This mode sits close to the Stoner
gap and is propagating at small q and becomes Landau
damped at larger q. We believe that this is the �rst time
that the Higgs amplitude mode has been predicted in a
weak ferromagnetic metal. We believe the itinerant weak
ferromagnet MnSi is a good candidate to search for this
mode and that it should be visible in inelastic neutron
scattering experiments.
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