Research on the Spin-Hamiltonian Parameters and Local Structure for the Tetragonal Mo^{5+} Centers in CaWO₄ Crystal

Y. $MEI^{a,b}$, W.-C. ZHENG^{c,*}, C.-F. WEI^a

^aSchool of Physics and Electronic Engineering, Mianyang Normal University, Mianyang 621000, P.R. China ^bResearch Center of Computational Physics, Mianyang Normal University, Mianyang 621000, P.R. China ^cDepartment of Material Science, Sichuan University, Chengdu 610064, P.R. China

(Received January 14, 2014)

The spin-Hamiltonian parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure constants $A_{\parallel}(A)$, $A_{\perp}(A)$, $A_{\parallel}(B)$ and $A_{\perp}(B)$, A(A) and A(B) belonging to isotopes ${}^{95}Mo^{5+}$ and ${}^{97}Mo^{5+}$) of Mo^{5+} ion at the tetragonally-compressed tetrahedral W^{6+} site in CaWO₄ crystal are calculated from the high-order perturbation formulae based on the two-mechanism model, where besides the contributions to spin-Hamiltonian parameters due to the crystal-field mechanism concerning the crystal-field excited states in the extensively-applied crystal-field theory, those due to charge-transfer mechanism concerning charge-transfer excited states (which are omitted in crystal-field theory) are included. The calculated results are in reasonable agreement with the experimental values. The calculations show that for the high-valence state d^n ions (e. g., Mo^{5+} considered) in crystals, the contributions due to charge-transfer mechanism should be taken into account in the studies of spin-Hamiltonian parameters. The local structure of Mo^{5+} center in CaWO₄ crystal due to the impurity-induced local lattice relaxation is estimated from the calculations. The results are discussed.

DOI: 10.12693/APhysPolA.126.1275

PACS: 76.30.He, 71.70.Ch, 75.10.Dg

1. Introduction

Tungstates crystals AWO₄ (where A indicates a divalent cation) with sheelite-type structure have attracted investigative efforts because they can be readily grown as good-sized, stable, colorlessly transparent and hard crystals. On being doped with rare earth and transition metal ions, they have the potential applications in solid state lasers, luminescence, phosphor and scintillator devices [1–6]. This fact caused a number of spectroscopic studies for AWO₄ crystals doped with rare earth and transition metal ions [1-12]. Decades ago, Azarbayejani and Merlo [12] measured the electron paramagnetic resonance (EPR) spectra of Mo^{5+} -doped CaWO₄ crystal and found that Mo⁵⁺ ion occupies the tetragonallycompressed W⁶⁺ site. The spin-Hamiltonian parameters (g factors g_{\parallel}, g_{\perp} and hyperfine structure constants $A_{\parallel}(A), A_{\perp}(A), A_{\parallel}(B) \text{ and } A_{\perp}(B), A(A) \text{ and } A(B) \text{ belong}$ to isotopes ${}^{95}Mo^{5+}$ and ${}^{97}Mo^{5+}$) of this Mo^{5+} tetrahedral center were reported from the measurement [12]. Up to date there is still lack of the theoretical explanations for these spin-Hamiltonian parameters.

For d^n ions in crystals, the spin-Hamiltonian parameters are generally calculated theoretically by the extensively-applied crystal-field (CF) theory where only the contributions due to CF mechanism concerning the interactions of CF excited states with the ground state are considered [13–15]. However, strictly speaking,

tributions or mechanisms, one is the above CF mechanism and another is the charge-transfer (CT) mechanism concerning with the interactions of CT excited states with the ground state [16–18]. The neglect of CT mechanism in CF theory is due to the CT energy levels being often much higher than the CF energy levels [19], which results in the very weak influence of CT energy levels on the ground state. However, since the CT energy levels lower with the increase of the valence state of d^n ions [19], for the high-valence state d^n ions (e. g., Mo⁵⁺ considered here) in crystals, the reasonable and exact calculations of spin-Hamiltonian parameters should also take the contributions due to CT mechanism into account and so the two (CF and CT)-mechanism model should be used. In this paper, we calculate the spin-Hamiltonian parameters of Mo⁵⁺-doped CaWO₄ crystals from the high-order perturbation formulae based on the two-mechanism model. In view of the fact that the spin-Hamiltonian parameters of a paramagnetic ion in crystals depend sensitively upon its immediate environment, the local (or defect) structure of Mo^{5+} centers caused by the impurity-induced local crystal relaxation in CaWO₄ crystals can be estimated from the calculations. The results are discussed.

the spin-Hamiltonian parameters originate from two con-

2. Calculation

The one-electron basis functions in the two-mechanism model for a tetrahedral d^n cluster can be expressed as the linear combinations of d orbitals $|d_{\gamma}\rangle$ of d^n ions and the p orbitals $|\pi_{\gamma}\rangle$ and $|\sigma_{\gamma}\rangle$ of ligand [17, 18]:

^{*}corresponding author; e-mail: zhengwc1@163.com

$$\begin{split} \psi_{\mathbf{e}}^{\chi} &= N_{\mathbf{e}}^{\chi} \left(|d_{\mathbf{e}}\rangle + \sqrt{3} \lambda_{\pi}^{\chi} | \pi_{\mathbf{e}} \rangle \right), \\ \psi_{\mathbf{t}}^{\chi} &= N_{\mathbf{t}}^{\chi} \left(|d_{\mathbf{t}} \langle + \lambda_{\sigma}^{\chi} | \sigma_{\mathbf{t}} \langle + \lambda_{\pi}^{\chi} | \pi_{\mathbf{t}} \rangle \right), \end{split}$$
(1)

where the subscript γ (= t or e) indicates the irreducible representation of T_d group and the superscript χ (= a or b) stands for the anti-bonding orbitals related to CF mechanism and bonding orbitals concerning CT mechanism. N_{γ} (normalization coefficients) and λ_{β} (the orbital mixing coefficients, $\beta = \sigma$ or π) are the molecular orbital (MO) coefficients.

The perturbation formulae of spin-Hamiltonian parameters for d^1 center in crystals depend upon its ground state and symmetry [13–15]. From the observed $g_{\parallel} > g_{\perp}$, one can conclude that the ground state of Mo⁵⁺ in CaWO₄ is $|d_z^2\rangle$. Thus, from the above one-electron basis functions and by adding the spin–orbit interaction term $H_{\rm SO}^{\rm CT}$, the Zeeman (or magnetic) interaction term $H_{Ze}^{\rm CT}$ and the hyperfine interaction term $H_{\rm hf}^{\rm CT}$ connected with CT mechanism to the traditional perturbation Hamiltonian in the CF mechanism, the high-order perturbation formulae based on the two-mechanism model for g factors of tetragonal d^1 tetrahedral cluster with the ground state $|d_z^2\rangle$ are derived in Ref. [18] and those for hyperfine structure constants A_i are derived here. They are

$$\begin{split} g_{\parallel} &= g_{e} + \Delta g_{\parallel}^{\rm CF} + \Delta g_{\parallel}^{\rm CT}, \\ \Delta g_{\parallel}^{\rm CF} &= \frac{3\zeta_{\rm CT}^{\prime 2} k_{\rm CT}^{\prime}}{(E_{1}^{\rm CF})^{2}}, \\ \Delta g_{\parallel}^{\rm CT} &= \frac{3\zeta_{\rm CT}^{2} k_{\rm CT}^{\prime}}{E_{1}^{\rm CT} E_{2}^{\rm CT}}, \\ g_{\perp} &= g_{e} + \Delta g_{\perp}^{\rm CF} + \Delta g_{\perp}^{\rm CT}, \\ \Delta g_{\perp}^{\rm CF} &= \frac{6\zeta_{\rm CF} k_{\rm CF}^{\prime}}{E_{1}^{\rm CF}} - \frac{3\zeta_{\rm CF}^{\prime} (\zeta_{\rm CF} k_{\rm CF}^{\prime} + \frac{1}{2}\zeta_{\rm CF}^{\prime} g_{e})}{(E_{1}^{\rm CF})^{2}}, \\ \Delta g_{\perp}^{\rm CT} &= \frac{6\zeta_{\rm CT} k_{\rm CT}}{E_{1}^{\rm CT}}, \\ A_{\parallel} &= A_{\parallel}^{(1)} + A_{\parallel}^{(2)\rm CF} + A_{\parallel}^{(2)\rm CT}, \\ A_{\parallel}^{(1)} &= P_{\rm CF} \left(-\kappa + \frac{4}{7}\right), \\ A_{\parallel}^{(2)\rm CF} &= P_{\rm CF}^{\prime} [(g_{\parallel}^{\rm CF} - g_{e}) - \frac{1}{7} (g_{\perp}^{\rm CF} - g_{e})], \\ A_{\parallel}^{(2)\rm CF} &= P_{\rm CT}^{\prime} \left(\frac{3\zeta_{\rm CT}^{2} k_{\rm CT}^{\prime}}{E_{1}^{\rm CT} E_{2}^{\rm CT}}\right), \\ A_{\perp} &= A_{\perp}^{(1)} + A_{\perp}^{(2)\rm CF} + A_{\perp}^{(2)\rm CT}, \\ A_{\perp}^{(1)} &= P_{\rm CF} \left(-\kappa - \frac{2}{7}\right), \\ A_{\perp}^{(2)\rm CF} &= P_{\rm CF}^{\prime} \left[\frac{15}{14} (g_{\perp}^{\rm CF} - g_{e})\right], \\ A_{\perp}^{(2)\rm CF} &= P_{\rm CF}^{\prime} \left[\frac{15}{14} (g_{\perp}^{\rm CF} - g_{e})\right], \end{split}$$

$$(2)$$

with the spin-orbit parameters ζ , ζ' , the orbit reduction factors k, k' and the dipolar hyperfine structure constants P, P' in CF and CT mechanisms [17, 18]:

$$\begin{aligned} \zeta_{\rm CF} &= (N_{\rm t}^{\rm a})^2 \left[\zeta_d^0 + \left(\sqrt{2}\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm a} - \frac{\lambda_{\pi}^{\rm a}^2}{2} \right) \zeta_p^0 \right], \\ \zeta_{\rm CF} &= N_{\rm t}^{\rm a} N_{\rm e}^{\rm a} \left[\zeta_d^0 + \left(\frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm a}}{\sqrt{2}} + \frac{\lambda_{\pi}^{\rm a}^2}{2} \right) \zeta_p^0 \right], \\ \zeta_{\rm CT} &= N_{\rm t}^{\rm a} N_{\rm t}^{\rm b} \left[\zeta_d^0 + \left(\frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm b} + \lambda_{\pi}^{\rm b}\lambda_{\sigma}^{\rm a}}{\sqrt{2}} - \frac{\lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}}{2} \right) \zeta_p^0 \right], \\ \zeta_{\rm CT}^{\prime} &= N_{\rm e}^{\rm b} N_{\rm t}^{\rm a} \left[\zeta_d^0 + \left(\frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm b} + \lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}}{\sqrt{2}} - \frac{\lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}}{2} \right) \zeta_p^0 \right], \\ k_{\rm CF}^{\prime} &= (N_{\rm t}^{\rm a})^2 \left[1 - \frac{\lambda_{\pi}^{\rm a2}}{2} + \sqrt{2}\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm a} + 2\lambda_{\sigma}^{\rm a}S_{dp}(\sigma) + 2\lambda_{\pi}^{\rm a}S_{dp}(\pi) \right], \\ k_{\rm CF}^{\prime} &= N_{\rm t}^{\rm a} N_{\rm e}^{\rm a} \left[1 + \frac{\lambda_{\pi}^{\rm a2}}{2} + \frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm a}}{\sqrt{2}} + 4\lambda_{\pi}^{\rm a}S_{dp}(\sigma) + 2\lambda_{\pi}^{\rm a}S_{dp}(\sigma) \right], \\ k_{\rm CF}^{\prime} &= N_{\rm t}^{\rm a} N_{\rm e}^{\rm b} \left[1 + \left(\frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm b} + \lambda_{\pi}^{\rm b}\lambda_{\sigma}^{\rm a}}{\sqrt{2}} - \frac{\lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}}{\sqrt{2}} \right) + (\lambda_{\sigma}^{\rm a} + \lambda_{\sigma}^{\rm b})S_{dp}(\sigma) + (\lambda_{\pi}^{\rm a} + \lambda_{\pi}^{\rm b})S_{dp}(\pi) \right], \\ k_{\rm CT}^{\prime} &= N_{\rm t}^{\rm a} N_{\rm t}^{\rm b} \left[1 + \left(\frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm b}}{\sqrt{2}} - \frac{\lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}}{2} \right) \\ + (\lambda_{\sigma}^{\rm a} + \lambda_{\sigma}^{\rm b})S_{dp}(\sigma) + (3\lambda_{\pi}^{\rm a} + \lambda_{\pi}^{\rm b})S_{dp}(\pi) \right], \\ k_{\rm CT}^{\prime} &= N_{\rm e}^{\rm a} N_{\rm t}^{\rm b} \left[1 + \left(\frac{\lambda_{\pi}^{\rm a}\lambda_{\sigma}^{\rm b}}{\sqrt{2}} - \frac{\lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}}{2} \right) \\ + \lambda_{\sigma}^{\rm b}S_{dp}(\sigma) + (3\lambda_{\pi}^{\rm a} + \lambda_{\pi}^{\rm b})S_{dp}(\pi) \right], \\ P_{\rm CF}^{\prime} &= (N_{\rm t}^{\rm a})^2 P_{\rm 0}, \quad P'_{\rm CF}^{\prime} = N_{\rm t}^{\rm a} N_{\rm t}^{\rm b} P_{\rm 0}. \end{aligned}$$

In above formulae, the superscripts and subscripts CF and CT stand for the parameters in the CF and CT mechanisms. $g_{\rm e} ~(\approx 2.0023)$ is the free-electron g value. κ is the core polarization constant. $E_1^{\rm CF}$ and $E_j^{\rm CT}$ are the CF and CT energy levels. ζ_d^0 and ζ_p^0 are the spin-orbit parame-ters of free d^n ion and free ligand. P_0 is the corresponding parameter of free d^n ion. For $(MoO_4)^{3-}$ clusters under study, we have $\zeta_d^0(Mo^{5+}) \approx 1030 \text{ cm}^{-1}$ [14], $\zeta_p^0(O^{2-}) \approx 150 \text{ cm}^{-1}$ [20], $P_0({}^{95}\text{Mo}^{5+}) \approx -66.7 \times 10^{-4} \text{ cm}^{-1}$ and $P_0({}^{97}\text{Mo}^{5+}) \approx -68.2 \times 10^{-4} \text{ cm}^{-1}$ [21]. $S_{dp}(\beta)$ are the group overlap integrals which can be calculated from the Slater-type self-consistent field (SCF) functions [22, 23] with the metal-ligand distance R. Since the ionic radius r_i of impurity is unlike the radius r_h of the host ion it replaces, the metal-ligand distance R in the impurity center should differ from the corresponding distance $R_{\rm h}$ in the host crystal. As an approximation, we estimate the distance R by using the empirical formula $R \approx R_{\rm h} + \frac{1}{2}(r_{\rm i} - r_{\rm h})$ [24]. For Mo⁵⁺ at the W^{6+} site of CaWO₄ crystal, from $r_i(Mo^{5+}) \approx 0.60$ Å, $r_{\rm h}({\rm W}^{6+}) \approx 0.56$ Å [25] and $R_{\rm h} \approx 1.782$ Å [26], we obtain $R \approx 1.802$ Å. Thus, we have $S_{dp}(\pi) \approx 0.03320$ and $S_{dp}(\sigma) \approx -0.10744.$

The MO coefficients N_{γ}^{χ} and λ_{β}^{χ} needed for the calculations of the parameters in Eq. (3) can be related by the normalization correlations

 $N_{\rm e}^{\chi} = [1 + 3(\lambda_{\sigma}^{\chi})^2 + 6\lambda_{\pi}^{\chi}S_{dp}(\pi)]^{-\frac{1}{2}},$

 $N_{\rm t}^{\chi} = [1 + (\lambda_{\sigma}^{\chi})^2 + (\lambda_{\pi}^{\chi})^2 + 2\lambda_{\sigma}^{\chi}S_{dp}(\sigma) + 2\lambda_{\pi}^{\chi}S_{dp}(\pi)]^{-\frac{1}{2}}$ (4) and the orthonormal relations [11]:

$$\lambda_{\pi}^{\rm b} = -\frac{1+3\lambda_{\pi}^{\rm a}S_{dp}(\pi)}{3[\lambda_{\pi}^{\rm a}+S_{dp}(\pi)]},$$

$$\lambda_{\sigma}^{\rm b} = -\frac{1+\lambda_{\pi}^{\rm a}\lambda_{\pi}^{\rm b}+(\lambda_{\pi}^{\rm a}+\lambda_{\pi}^{\rm b})S_{dp}(\pi)+\lambda_{\sigma}^{\rm a}S_{dp}(\sigma)}{\lambda_{\sigma}^{\rm a}+S_{dp}(\sigma)}$$
(5)

and the approximate relationships

$$f_{e} = (N_{e}^{a})^{4} [1 + 6\lambda_{\pi}^{a} S_{dp}(\pi) + 9(\lambda_{\pi}^{a})^{2} S_{dp}^{2}(\pi)]$$

$$f_{t} = (N_{t}^{a})^{4} [1 + 2\lambda_{\sigma}^{a} S_{dp}(\sigma) + 2\lambda_{\pi}^{a} S_{dp}(\pi)$$

 $+2\lambda_{\sigma}^{\mathrm{a}}S_{dp}(\sigma)\lambda_{\pi}^{\mathrm{a}}S_{dp}(\pi)+(\lambda_{\sigma}^{\mathrm{a}})^{2}S_{dp}^{2}(\sigma)+(\lambda_{\sigma}^{\mathrm{a}})^{2}S_{dp}^{2}(\sigma)],(6)$ in which we assume the covalence factor $f_{\mathrm{t}} \approx f_{\mathrm{e}} \approx f_{\gamma}$ for decreasing the number of adjustable parameter and take f_{γ} as an adjustable parameter.

The CT energy levels of $(MoO_4)^{3-}$ clusters have not been reported. Since the CT energy levels of the $(CuCl_4)^{2-}$ tetrahedral clusters are near to those of the $(CuCl_6)^{4-}$ octahedral clusters [27, 28], for $(MoO_4)^{3-}$ tetrahedral clusters, we approximately take $E_1^{CT} \approx$ 32400 cm^{-1} and $E_2^{CT} \approx 36400 \text{ cm}^{-1}$, the values of $(MoO_6)^{7-}$ octahedral clusters [29].

In the CF theory, the CF energy level

$$E_1^{\rm CF} = E(|d_{xy,yz}\rangle) - E(|d_z\rangle) \approx 10Dq - Ds - 10Dt, \qquad (7)$$

where the tetragonal field parameters Ds and Dt can be calculated from the superposition model [30]. In the model, they can be written as

$$Ds = -\frac{1}{7}B_{20} = -\frac{4}{7}\bar{A}_2(R)(3\cos^2\theta - 1)$$
$$Dt = -\frac{1}{21}\left(B_{40} - \frac{\sqrt{70}}{5}B_{44}\right) = -\frac{4}{21}\bar{A}_4(R)(35\cos^4\theta - 30\cos^2\theta + 3 + 7\sin^4\theta), \quad (8)$$

where \tilde{B}_{kl}^{1} are the CF parameters in Wybourne notation [31, 32]. $\bar{A}_{k}(R)$ (k = 2, 4) are the intrinsic parameters. For $4d^n$ ions in crystals, the ratio $\bar{A}_2(R)/\bar{A}_4(R) \approx 6 \pm 2$ was found [29, 33–35], we take the average value $\bar{A}_2(R)/\bar{A}_4(R) \approx 6$ here. The parameter $\bar{A}_4(R)$ for d^n tetrahedral cluster can take the form $\bar{A}_4(R) \approx -\frac{27}{16}Dq$ [36], where Dq is the cubic field parameter. The value of Dq for $(MoO_4)^{3-}$ cluster in crystals has not been reported and is estimated approximately as follows.

The optical spectral data for various d^n ions in crystals suggest that the value of Dq for $4d^n$ clusters is about 1.5(1) times that of the isoelectronic $3d^n$ clusters [19]. So, from $Dq \approx 1350(50) \text{ cm}^{-1}$ of the $3d^{1}(\text{CrO}_{4})^{3-}$ tetrahedral clusters [37], we obtain for the corresponding $4d^1(MoO_4)^{3-}$ tetrahedral cluster, $Dq \approx 1900 \text{ cm}^{-1}$. $\bar{\theta}$ refers to the angle between the metal-ligand distance Rand C_4 axis. Analogous to the bonding length R, the bonding angle θ in the impurity center may be different from the corresponding angle $\theta_{\rm h}$ in the host crystal. We assume $\theta \approx \theta_{\rm h} + \Delta \theta$, where $\theta_{\rm h} \approx 56.89^{\circ}$ [26] in the host CaWO₄ crystal and $\Delta\theta$ represents the impurityinduced angular distortion. $\Delta \theta$ is also treated as an adjustable parameter. Thus, in the above formulae, we have three parameters f_{γ} , $\Delta \theta$ and κ left as the adjustable parameters. From the calculated (with the above high-order perturbation formulae)-to-experimental fitting of spin-Hamiltonian parameters for CaWO₄: Mo⁵⁺, we obtain

$$f_{\gamma} \approx 0.525, \quad \Delta \theta \approx 0.4^{\circ}, \quad \kappa \approx 0.41.$$
 (9)

The MO coefficients based on the value of f_{γ} are given in Table I. The parameters in Eq. (3) calculated from these MO coefficients are listed in Table II. The calculated spin-Hamiltonian parameters are compared with the experimental values in Table III.

TABLE I

The molecular orbital (MO) coefficients for $(MoO_4)^{3-}$ tetrahedral clusters in CaWO₄: Mo^{5+} crystal.

$N_{\rm t}^{\rm a}$	$N_{\rm e}^{\rm a}$	$N_{\rm t}^{\rm b}$	$N_{\rm e}^{\rm b}$	$\lambda^{\mathrm{a}}_{\sigma}$	$\lambda_\pi^{ m a}$	$\lambda^{ m b}_{\sigma}$	$\lambda^{ m b}_{\pi}$
0.8767	0.8745	0.3622	0.2350	0.3709	-0.5274	-2.3792	0.6391

TABLE II

The spin-orbit parameters ζ , ζ' (cm⁻¹), the orbital reduction factors k, k' and the dipolar hyperfine structure constants P, P' (in 10⁻⁴ cm⁻¹) in CF and CT mechanisms for (MoO₄)³⁻ tetrahedral clusters in CaWO₄: Mo⁵⁺ crystal.

$\zeta_{ m CF}$	$\zeta\prime_{ m CF}$	$\zeta_{ m CT}$	$\zeta\prime_{ m CT}$	$k_{\rm CF}$	$k\prime_{ m CF}$	$k_{ m CT}$	$k\prime_{ m CT}$
743.8	789.8	250.0	360.3	0.3610	0.4698	0.7757	0.7222
$P_{\rm CF}({\rm A})^a$	$P\prime_{\rm CF}({\rm A})^a$	$P_{\rm CT}({\rm A})^a$	$P'_{\rm CT}({\rm A})^a$	$P_{\rm CF}({ m B})^a$	$P\prime_{\rm CF}({\rm B})^a$	$P_{\rm CT}({\rm B})^a$	$P\prime_{\rm CT}({\rm B})^a$
-51.3	-51.1	-21.2	-21.1	-52.4	-52.3	-21.7	-21.6

 ${}^{a}P(A)$ and P(B) belong to isotopes ${}^{95}Mo^{5+}$ and ${}^{97}Mo^{5+}$.

The spin-Hamiltonian parameters (g factorg_{||}, g_{\perp} and hyperfine structure constants $A_{\parallel}(A)$, $A_{\perp}(A)$, $A_{\parallel}(B)$ and $A_{\perp}(B)$, A(A) and A(B) belong to isotopes ⁹⁵Mo⁵⁺ and ⁹⁷Mo⁵⁺, constants A are in units of 10^{-4} cm⁻¹) for the tetragonal (MoO₄)³⁻ clusters in CaWO₄ crystals.

$\Delta g_{\parallel}^{ m CF}$	$\Delta g_{\parallel}^{ m CT}$	$g_{\parallel}({ m calc.})$	$g_{\parallel}(\text{expt. [12]})$	
-0.0175	0.0001	1.9849	1.987	
$\Delta g_{\perp}^{ m CF}$	$\Delta g_{\perp}^{ m CT}$	$g_{\perp}(ext{calc.})$	$g_{\perp}(\text{expt. [12]})$	
-0.1508	0.0359	1.8874	1.887	
$A^{(1)}_{\parallel}(\mathbf{A})$	$A_{\parallel}^{(2)\mathrm{CF}}(\mathrm{A})$	$A_{\parallel}^{(2)\mathrm{CT}}(\mathrm{A})$	$A_{\parallel}({ m A})({ m calc.})$	$A_{\parallel}(\mathrm{A})(\mathrm{expt.}[12])$
-8.27	-0.21	-0.002	-8.48	8.39^{a}
$A^{(1)}_{\perp}(\mathrm{A})$	$A_{\perp}^{(2)\rm CF}({\rm A})$	$A_{\perp}^{(2)\mathrm{CT}}(\mathrm{A})$	$A_{\perp}(\mathrm{A})(\mathrm{calc.})$	$A_{\perp}(\mathbf{A})(\mathbf{expt.[12]})$
35.66	8.26	-0.76	43.16	41.18^{a}
$A^{(1)}_{\parallel}(\mathrm{B})$	$A_{\parallel}^{(2)\mathrm{CF}}(\mathrm{B})$	$A_{\parallel}^{(2)\mathrm{CT}}(\mathrm{B})$	$A_{\parallel}({ m B})({ m calc.})$	$A_{\parallel}(\mathrm{B})(\mathrm{expt.}[12])$
-8.45	-0.21	-0.002	-8.66	8.64^{a}
$A^{(1)}_{\perp}(\mathrm{B})$	$A_{\perp}^{(2)CF}(\mathbf{B})$	$A_{\perp}^{(2)CT}(\mathbf{B})$	$A_{\perp}(\mathrm{B})(\mathrm{calc.})$	$A_{\perp}(\mathrm{B})(\mathrm{expt.}[12])$
36.46	8.44	-0.78	44.12	42.52^{a}
a —				

^aThe values are actually the absolute values.

3. Discussion

The signs of hyperfine structure constants A_i are hard to be determined solely by EPR experiment [14, 21, 38]. So, even though the values of A_i are frequently written as positive in EPR experiment, they are actually the absolute values. For Mo⁵⁺ ions in CaWO₄ crystal, our calculations suggest that A_{\parallel} is negative and A_{\perp} is positive (see Table III).

The angular distortion $\Delta \theta \neq 0$ confirms the expectation that the bonding angle θ in the Mo⁵⁺ impurity center in CaWO₄ is different from the corresponding angle θ_h in the host crystal because of the impurity-induced local lattice relaxation. So, the local structure of a paramagnetic impurity center in crystals can be acquired by studying its EPR data.

Table III shows that by using three adjustable parameters, the calculated spin-Hamiltonian parameters g_{\parallel} , $g_{\perp}, A_{\parallel}(A), A_{\perp}(A), A_{\parallel}(B)$ and $A_{\perp}(B)$ are in reasonable agreement with the experimental values. This suggests that the high-order perturbation formulae based on the two-mechanism model are effective here. To characterize the relative importance of CT mechanism, we introduce the ratio $|Q^{\rm CT}/Q^{\rm CF}|$. From Table III, we obtain $|Q^{\rm CT}/Q^{\rm CF}| \approx 0.6\%, 24\%, 1\%$ and 9% for $Q = \Delta g_{\parallel}, \Delta g_{\perp}, \Delta g_{\perp}$, $A_{\parallel}^{(2)}$ and $A_{\perp}^{(2)}.$ It can be seen that the values $|Q^{\rm CT}/Q^{\rm CF}|$ of relative importance of CT mechanism for Δg_{\parallel} and $A_{\parallel}^{(2)}$ are much smaller than those for Δg_{\perp} and $A_{\perp}^{(2)}$. The main reason of the above great difference in $|Q^{\rm CT}/Q^{\rm CF}|$ may be due to the contributions to Δg_{\parallel} and $A_{\parallel}^{(2)}$ in both the CF and CT mechanisms depending upon the third-order perturbation terms [note: the second-order terms are absent according to the derivation, see Eq. (2)], whereas those to Δg_{\perp} and $A_{\perp}^{(2)}$ mainly from the second-order

perturbation terms. This leads the ratios $|Q^{\text{CT}}/Q^{\text{CF}}|$ for Δg_{\parallel} and $A_{\parallel}^{(2)}$ to be connected roughly with $(E^{\text{CT}}/E^{\text{CF}})^2$, but those for Δg_{\perp} and $A_{\parallel}^{(2)}$ roughly with $E^{\text{CT}}/E^{\text{CF}}$ [see Eq. (2)]. Since $E^{\text{CT}}/E^{\text{CF}} < 0.5$ (note: the calculated $E_1^{\text{CF}} \approx 13240 \text{ cm}^{-1}$ here), the above large difference in the relative importance can be understood. In consideration of the great relative importance of CT mechanism to Δg_{\perp} and $A_{\perp}^{(2)}$, in the rational and precise calculations of spin-Hamiltonian parameters and the estimations of the local structure of impurity centers (by analyzing the spin-Hamiltonian parameters) for the high-valence state d^n ions in crystals, one should apply the method based on the two-mechanism model.

Acknowledgments

This project is supported by the Initial Foundation of Mianyang Normal University (Grant No. MQD2011A05), the Key Project of Sichuan Provincial Science and Technology Department (Grant No. 2012SZZ025, 2012JY0045).

References

- A.A. Kaminskii, Laser Crystals: Their Physics and Properties, Springer-Verlag, Berlin 1981.
- [2] J.Y. Sun, Y.N. Sun, C. Cao, Z.G. Xia, H.Y. Du, Appl. Phys. B 111, 367 (2013).
- [3] K.G. Sharma, N.R. Singh, J. Rare Earths 30, 310 (2012).
- [4] J.S. Liao, B. Qiu, H.R. Wen, J.L. Chen, W.X. You, L.B. Liu, J. Alloys Comp. 487, 758 (2009).
- [5] V.V. Laguta, A. Vedda, D.Di. Martino, M. Martino, M. Nikl, E. Mihokova, J. Rosa, Y. Usuki, *Phys. Rev. B* 71, 235108 (2005).

- [6] E. Baibekov, I. Kurkin, M. Gufurov, B. Endeward, R. Rakhmatullin, G. Mamin, J. Magn. Reson. 209, 61 (2011).
- [7] C.A. Morrison, R.P. Leavitt, in: Handbook on the Physics and Chemistry of Rare Earths, Eds. K.A. Gschneidner, Jr., L. Eyring, Vol. 5, North-Holland Publishing Company, Amsterdam 1982, Chapter 46.
- [8] I. Trabelsi, M. Dammak, R. Maalej, M. Kamoun, *Physica B* 406, 315 (2011).
- [9] S. Mahlik, E. Cavalli, M. Bettinelli, M. Grinberg, *Radiat. Meas.* 56, 1 (2013).
- [10] T.H. Yeom, J. Korean. Phys. Soc. 47, 681 (2005).
- [11] Z. Sroubek, K. Zdansky, J. Chem. Phys. 44, 3078 (1966).
- [12] G.H. Azarbayejani, A.L. Merlo, *Phys. Rev.* 137, A489 (1965).
- [13] J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964.
- [14] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970.
- [15] J.R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Clarendon Press, Oxford 1990.
- [16] J.A. Arambura, M. Moreno, Solid State Commun.
 62, 513 (1987).
- [17] W.C. Zheng, W.Q. Yang, Y. Mei, Mol. Phys. 107, 2245 (2009).
- [18] Y. Mei, W.C. Zheng, Y.G. Yang, H.G. Liu, *Physica B* 407, 4365 (2012).
- [19] A.B.P. Lever, *Inorganic Electronic Spectroscopy*, Elsevier, Amsterdam 1984.
- [20] M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992).
- [21] B.R. McGarvey, J. Phys. Chem. 71, 51 (1967).

- [22] E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- [23] E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).
- [24] W.C. Zheng, *Physica B* **215**, 255 (1995).
- [25] R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- [26] R.M. Hazen, L.W. Finger, J.W.E. Mariathasan, J. Phys. Chem. Solids 46, 253 (1985).
- [27] R. Valiente, F. Rodriguez, M.T. Barriuso, C. Sousa, C. de Graaf, T.A. Arambura, M. Moreno, *High Press. Res.* 22, 475 (2002).
- [28] J.A. Arambura, M. Moreno, A. Bencini, *Chem. Phys. Lett.* **140**, 462 (1987).
- [29] Y. Mei, W.C. Zheng, H.G. Liu, *Physica B* 430, 27 (2013).
- [30] D.J. Newman, B. Ng, *Rep. Prog. Phys.* 52, 699 (1989).
- [31] B.G. Wybourne, Spectroscopic Properties of Rare Earth, Wiley, New York 1965.
- [32] Z.Y. Yang, Y. Hao, C. Rudowicz, Y.Y. Yeung, J. Phys. Condens. Matter 16, 348 (2004).
- [33] W.C. Zheng, W. Fang, Y. Mei, J. Appl. Phys. 101, 053911 (2007).
- [34] W.L. Feng, W.Q. Yang, W.C. Zheng, X.M. Li, J. Alloys Comp. 507, 498 (2010).
- [35] W.C. Zheng, Y. Mei, W.Q. Yang, *Philos. Mag.* 28, 1621 (2009).
- [36] W.L. Yu, M.G. Zhao, *Phys. Rev. B* 37, 9254 (1988).
- [37] M. Atanasov, T.C. Brunold, H.U. Gudel, C. Daul, *Inorg. Chem.* 37, 4589 (1998).
- [38] V. Havlicek, P. Novak, B.V. Mill, *Phys. Status So*lidi B 64, K19 (1974).