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The spin-Hamiltonian parameters (g factors g‖, g⊥ and hyper�ne structure constants A‖(A), A⊥(A), A‖(B)

and A⊥(B), A(A) and A(B) belonging to isotopes
95Mo5+ and 97Mo5+) of Mo5+ ion at the tetragonally-compressed

tetrahedral W6+ site in CaWO4 crystal are calculated from the high-order perturbation formulae based on the
two-mechanism model, where besides the contributions to spin-Hamiltonian parameters due to the crystal-�eld
mechanism concerning the crystal-�eld excited states in the extensively-applied crystal-�eld theory, those due to
charge-transfer mechanism concerning charge-transfer excited states (which are omitted in crystal-�eld theory) are
included. The calculated results are in reasonable agreement with the experimental values. The calculations show
that for the high-valence state dn ions (e. g., Mo5+ considered) in crystals, the contributions due to charge-transfer
mechanism should be taken into account in the studies of spin-Hamiltonian parameters. The local structure of Mo5+

center in CaWO4 crystal due to the impurity-induced local lattice relaxation is estimated from the calculations.
The results are discussed.
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1. Introduction

Tungstates crystals AWO4 (where A indicates a diva-
lent cation) with sheelite-type structure have attracted
investigative e�orts because they can be readily grown
as good-sized, stable, colorlessly transparent and hard
crystals. On being doped with rare earth and transi-
tion metal ions, they have the potential applications in
solid state lasers, luminescence, phosphor and scintilla-
tor devices [1�6]. This fact caused a number of spectro-
scopic studies for AWO4 crystals doped with rare earth
and transition metal ions [1�12]. Decades ago, Azarbaye-
jani and Merlo [12] measured the electron paramagnetic
resonance (EPR) spectra of Mo5+-doped CaWO4 crys-
tal and found that Mo5+ ion occupies the tetragonally-
compressed W6+ site. The spin-Hamiltonian parame-
ters (g factors g‖, g⊥ and hyper�ne structure constants
A‖(A), A⊥(A), A‖(B) and A⊥(B), A(A) and A(B) belong
to isotopes 95Mo5+ and 97Mo5+) of this Mo5+ tetrahedral
center were reported from the measurement [12]. Up to
date there is still lack of the theoretical explanations for
these spin-Hamiltonian parameters.
For dn ions in crystals, the spin-Hamiltonian pa-

rameters are generally calculated theoretically by the
extensively-applied crystal-�eld (CF) theory where only
the contributions due to CF mechanism concerning the
interactions of CF excited states with the ground state
are considered [13�15]. However, strictly speaking,
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the spin-Hamiltonian parameters originate from two con-
tributions or mechanisms, one is the above CF mecha-
nism and another is the charge-transfer (CT) mechanism
concerning with the interactions of CT excited states
with the ground state [16�18]. The neglect of CT mech-
anism in CF theory is due to the CT energy levels be-
ing often much higher than the CF energy levels [19],
which results in the very weak in�uence of CT energy
levels on the ground state. However, since the CT energy
levels lower with the increase of the valence state of dn

ions [19], for the high-valence state dn ions (e. g., Mo5+

considered here) in crystals, the reasonable and exact
calculations of spin-Hamiltonian parameters should also
take the contributions due to CT mechanism into ac-
count and so the two (CF and CT)-mechanism model
should be used. In this paper, we calculate the spin-
Hamiltonian parameters of Mo5+-doped CaWO4 crystals
from the high-order perturbation formulae based on the
two-mechanism model. In view of the fact that the spin-
Hamiltonian parameters of a paramagnetic ion in crystals
depend sensitively upon its immediate environment, the
local (or defect) structure of Mo5+ centers caused by the
impurity-induced local crystal relaxation in CaWO4 crys-
tals can be estimated from the calculations. The results
are discussed.

2. Calculation

The one-electron basis functions in the two-mechanism
model for a tetrahedral dn cluster can be expressed as the
linear combinations of d orbitals |dγ〉 of dn ions and the
p orbitals |πγ〉 and |σγ〉 of ligand [17, 18]:
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ψχe = Nχ
e

(
|de〉+

√
3λχπ|πe〉

)
,

ψχt = Nχ
t (|dt〈+λχσ |σt〈+λχπ|πt〉) , (1)

where the subscript γ (= t or e) indicates the irreducible
representation of Td group and the superscript χ (= a
or b) stands for the anti-bonding orbitals related to CF
mechanism and bonding orbitals concerning CT mecha-
nism. Nγ (normalization coe�cients) and λβ (the orbital
mixing coe�cients, β = σ or π) are the molecular orbital
(MO) coe�cients.

The perturbation formulae of spin-Hamiltonian param-
eters for d1 center in crystals depend upon its ground
state and symmetry [13�15]. From the observed g‖ > g⊥,
one can conclude that the ground state of Mo5+ in
CaWO4 is |d2z〉. Thus, from the above one-electron basis
functions and by adding the spin�orbit interaction term
HCT

SO , the Zeeman (or magnetic) interaction term HCT
Ze

and the hyper�ne interaction term HCT
hf connected with

CT mechanism to the traditional perturbation Hamilto-
nian in the CF mechanism, the high-order perturbation
formulae based on the two-mechanism model for g fac-
tors of tetragonal d1 tetrahedral cluster with the ground
state |d2z〉 are derived in Ref. [18] and those for hyper�ne
structure constants Ai are derived here. They are

g‖ = ge + ∆gCF
‖ + ∆gCT

‖ ,

∆gCF
‖ =

3ζ ′
2
CF(kCF − ge)

(ECF
1 )2

,

∆gCT
‖ =

3ζ2CTk
′
CT

ECT
1 ECT

2

,

g⊥ = ge + ∆gCF
⊥ + ∆gCT

⊥ ,

∆gCF
⊥ =

6ζCFk
′
CF

ECF
1

−
3ζ ′CF(ζCFk

′
CF + 1

2ζ
′
CFge)

(ECF
1 )2

,

∆gCT
⊥ =

6ζCTkCT

ECT
1

,

A‖ = A
(1)
‖ +A

(2)CF
‖ +A

(2)CT
‖ ,

A
(1)
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(
−κ+

4

7

)
,

A
(2)CF
‖ = P ′CF[(gCF
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1

7
(gCF
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A
(2)CT
‖ = P ′CT

(
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′
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1 ECT

2

)
,

A⊥ = A
(1)
⊥ +A

(2)CF
⊥ +A

(2)CT
⊥ ,

A
(1)
⊥ = PCF

(
−κ− 2

7

)
,

A
(2)CF
⊥ = P ′CF

[
15

14
(gCF

⊥
− ge)

]
,

A
(2)CT
⊥ = P ′CT

(
6ζCTkCT

ECT
1

)
(2)

with the spin�orbit parameters ζ, ζ′, the orbit reduction
factors k, k′ and the dipolar hyper�ne structure constants
P , P ′ in CF and CT mechanisms [17, 18]:

ζCF = (Na
t )2
[
ζ0d +

(√
2λaπλ

a
σ −

λa2π
2

)
ζ0p

]
,

ζ ′CF = Na
t N

a
e

[
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(
λaπλ

a
σ√

2
+
λa2π
2

)
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]
,

ζCT = Na
t N

b
t
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(
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b
σ + λbπλ

a
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2
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,
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(
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b
π
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,

kCF=(Na
t )2
[
1−λ

a2
π

2
+
√

2λaπλ
a
σ+2λaσSdp(σ)+2λaπSdp(π)

]
,

k′CF = Na
t N

a
e

[
1 +

λa2π
2

+
λaπλ

a
σ√

2

+4λaπSdp(π) + 2λaσSdp(σ)] ,

kCT = Na
t N

b
t

[
1 +

(
λaπλ

b
σ + λbπλ

a
σ√

2
− λaπλ

b
π

2

)
+(λaσ + λbσ)Sdp(σ) + (λaπ + λbπ)Sdp(π)

]
,

k′CT = Na
eN

b
t

[
1 +

(
λaπλ

b
σ√

2
− λaπλ

b
π

2

)
+λbσSdp(σ) + (3λaπ + λbπ)Sdp(π)

]
,

PCF = (Na
t )2P0, P ′CF = Na

t N
a
e P0,

PCT = Nb
t N

a
t P0, P ′CT = Na

eN
b
t P0. (3)

In above formulae, the superscripts and subscripts CF
and CT stand for the parameters in the CF and CTmech-
anisms. ge (≈ 2.0023) is the free-electron g value. κ is the
core polarization constant. ECF

1 and ECT
j are the CF and

CT energy levels. ζ0d and ζ0p are the spin�orbit parame-
ters of free dn ion and free ligand. P0 is the corresponding
parameter of free dn ion. For (MoO4)3− clusters under
study, we have ζ0d(Mo5+) ≈ 1030 cm−1 [14], ζ0p(O2−) ≈
150 cm−1 [20], P0(95Mo5+) ≈ −66.7 × 10−4 cm−1 and
P0(97Mo5+) ≈ −68.2 × 10−4 cm−1 [21]. Sdp(β) are the
group overlap integrals which can be calculated from the
Slater-type self-consistent �eld (SCF) functions [22, 23]
with the metal�ligand distance R. Since the ionic ra-
dius r i of impurity is unlike the radius rh of the host
ion it replaces, the metal�ligand distance R in the im-
purity center should di�er from the corresponding dis-
tance Rh in the host crystal. As an approximation,
we estimate the distance R by using the empirical for-
mula R ≈ Rh + 1

2 (r i − rh) [24]. For Mo5+ at the
W6+ site of CaWO4 crystal, from r i (Mo5+) ≈ 0.60 Å,
rh(W6+) ≈ 0.56 Å [25] and Rh ≈ 1.782 Å [26], we ob-
tain R ≈ 1.802 Å. Thus, we have Sdp(π) ≈ 0.03320 and
Sdp(σ) ≈ −0.10744.

The MO coe�cients Nχ
γ and λχβ needed for the calcu-

lations of the parameters in Eq. (3) can be related by the
normalization correlations

Nχ
e = [1 + 3(λχσ)2 + 6λχπSdp(π)]−

1
2 ,

Nχ
t =[1+(λχσ)2+(λχπ)2+2λχσSdp(σ)+2λχπSdp(π)]−

1
2 (4)

and the orthonormal relations [11]:
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λbπ = −1 + 3λaπSdp(π)

3[λaπ + Sdp(π)]
,

λbσ = −1 + λaπλ
b
π + (λaπ + λbπ)Sdp(π) + λaσSdp(σ)

λaσ + Sdp(σ)
(5)

and the approximate relationships
fe = (Na

e)4[1 + 6λaπSdp(π) + 9(λaπ)2S2
dp(π)]

ft = (Na
t )4[1 + 2λaσSdp(σ) + 2λaπSdp(π)

+2λaσSdp(σ)λaπSdp(π)+(λaσ)2S2
dp(σ)+(λaσ)2S2

dp(σ)],(6)
in which we assume the covalence factor ft ≈ fe ≈ fγ for
decreasing the number of adjustable parameter and take
fγ as an adjustable parameter.
The CT energy levels of (MoO4)3− clusters have not

been reported. Since the CT energy levels of the
(CuCl4)2− tetrahedral clusters are near to those of the
(CuCl6)4− octahedral clusters [27, 28], for (MoO4)3−

tetrahedral clusters, we approximately take ECT
1 ≈

32400 cm−1 and ECT
2 ≈ 36400 cm−1, the values of

(MoO6)7− octahedral clusters [29].
In the CF theory, the CF energy level
ECF

1 =E(|dxy,yz〉)−E(|dz〉)≈10Dq−Ds−10Dt, (7)
where the tetragonal �eld parameters Ds and Dt can
be calculated from the superposition model [30]. In the
model, they can be written as

Ds = −1

7
B20 = −4

7
Ā2(R)(3 cos2 θ − 1)

Dt = − 1

21

(
B40 −

√
70

5
B44

)
=

− 4

21
Ā4(R)(35 cos4 θ − 30 cos2 θ + 3 + 7 sin4 θ), (8)

where Bkl are the CF parameters in Wybourne no-
tation [31, 32]. Āk(R) (k = 2, 4) are the intrinsic

parameters. For 4dn ions in crystals, the ratio
Ā2(R)/Ā4(R) ≈ 6 ± 2 was found [29, 33�35], we take
the average value Ā2(R)/Ā4(R) ≈ 6 here. The param-
eter Ā4(R) for dn tetrahedral cluster can take the form
Ā4(R) ≈ − 27

16Dq [36], where Dq is the cubic �eld param-
eter. The value of Dq for (MoO4)3− cluster in crystals
has not been reported and is estimated approximately
as follows.

The optical spectral data for various dn ions in crys-
tals suggest that the value of Dq for 4dn clusters is about
1.5(1) times that of the isoelectronic 3dn clusters [19].
So, from Dq ≈ 1350(50) cm−1 of the 3d1(CrO4)3− tetra-
hedral clusters [37], we obtain for the corresponding
4d1(MoO4)3− tetrahedral cluster, Dq ≈ 1900 cm−1. θ
refers to the angle between the metal�ligand distance R
and C4 axis. Analogous to the bonding length R, the
bonding angle θ in the impurity center may be di�er-
ent from the corresponding angle θh in the host crys-
tal. We assume θ ≈ θh + ∆θ, where θh ≈ 56.89◦ [26] in
the host CaWO4 crystal and ∆θ represents the impurity-
induced angular distortion. ∆θ is also treated as an ad-
justable parameter. Thus, in the above formulae, we
have three parameters fγ , ∆θ and κ left as the ad-
justable parameters. From the calculated (with the above
high-order perturbation formulae)-to-experimental �t-
ting of spin-Hamiltonian parameters for CaWO4: Mo5+,
we obtain

fγ ≈ 0.525, ∆θ ≈ 0.4◦, κ ≈ 0.41. (9)

The MO coe�cients based on the value of fγ are given
in Table I. The parameters in Eq. (3) calculated from
these MO coe�cients are listed in Table II. The cal-
culated spin-Hamiltonian parameters are compared with
the experimental values in Table III.

TABLE I

The molecular orbital (MO) coe�cients for (MoO4)3− tetrahedral clusters in CaWO4:
Mo5+ crystal.

Na
t Na

e Nb
t Nb

e λa
σ λa

π λb
σ λb

π

0.8767 0.8745 0.3622 0.2350 0.3709 −0.5274 −2.3792 0.6391

TABLE II

The spin-orbit parameters ζ, ζ′ (cm−1), the orbital reduction factors k, k′ and the dipolar hyper�ne
structure constants P , P ′ (in 10−4 cm−1) in CF and CT mechanisms for (MoO4)3− tetrahedral clusters in
CaWO4: Mo5+ crystal.

ζCF ζ′CF ζCT ζ′CT kCF k′CF kCT k′CT

743.8 789.8 250.0 360.3 0.3610 0.4698 0.7757 0.7222

PCF(A)
a P ′CF(A)

a PCT(A)
a P ′CT(A)

a PCF(B)
a P ′CF(B)

a PCT(B)
a P ′CT(B)

a

−51.3 −51.1 −21.2 −21.1 −52.4 −52.3 −21.7 −21.6
aP (A) and P (B) belong to isotopes 95Mo5+ and 97Mo5+.
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TABLE III

The spin-Hamiltonian parameters (g factorg‖, g⊥ and hyper�ne structure constants

A‖(A), A⊥(A), A‖(B) and A⊥(B), A(A) and A(B) belong to isotopes 95Mo5+ and
97Mo5+, constants A are in units of 10−4 cm−1) for the tetragonal (MoO4)3− clusters
in CaWO4 crystals.

∆gCF
‖ ∆gCT

‖ g‖(calc.) g‖(expt. [12])

−0.0175 0.0001 1.9849 1.987

∆gCF
⊥ ∆gCT

⊥ g⊥(calc.) g⊥(expt. [12])

−0.1508 0.0359 1.8874 1.887

A
(1)

‖ (A) A
(2)CF

‖ (A) A
(2)CT

‖ (A) A‖(A)(calc.) A‖(A)(expt.[12])

−8.27 −0.21 −0.002 −8.48 8.39a

A
(1)
⊥ (A) A

(2)CF
⊥ (A) A

(2)CT
⊥ (A) A⊥(A)(calc.) A⊥(A)(expt.[12])

35.66 8.26 −0.76 43.16 41.18a

A
(1)

‖ (B) A
(2)CF

‖ (B) A
(2)CT

‖ (B) A‖(B)(calc.) A‖(B)(expt.[12])

−8.45 −0.21 −0.002 −8.66 8.64a

A
(1)
⊥ (B) A

(2)CF
⊥ (B) A

(2)CT
⊥ (B) A⊥(B)(calc.) A⊥(B)(expt.[12])

36.46 8.44 −0.78 44.12 42.52a

aThe values are actually the absolute values.

3. Discussion

The signs of hyper�ne structure constants Ai are hard
to be determined solely by EPR experiment [14, 21, 38].
So, even though the values of Ai are frequently written
as positive in EPR experiment, they are actually the ab-
solute values. For Mo5+ ions in CaWO4 crystal, our cal-
culations suggest that A‖ is negative and A⊥ is positive
(see Table III).
The angular distortion ∆θ 6= 0 con�rms the expec-

tation that the bonding angle θ in the Mo5+ impurity
center in CaWO4 is di�erent from the corresponding an-
gle θh in the host crystal because of the impurity-induced
local lattice relaxation. So, the local structure of a para-
magnetic impurity center in crystals can be acquired by
studying its EPR data.
Table III shows that by using three adjustable pa-

rameters, the calculated spin-Hamiltonian parameters g‖,
g⊥, A‖(A), A⊥(A), A‖(B) and A⊥(B) are in reasonable
agreement with the experimental values. This suggests
that the high-order perturbation formulae based on the
two-mechanism model are e�ective here. To character-
ize the relative importance of CT mechanism, we intro-
duce the ratio |QCT/QCF|. From Table III, we obtain
|QCT/QCF| ≈ 0.6%, 24%, 1% and 9% for Q = ∆g‖, ∆g⊥,

A
(2)
‖ and A(2)

⊥ . It can be seen that the values |QCT/QCF|
of relative importance of CT mechanism for ∆g‖ and A

(2)
‖

are much smaller than those for ∆g⊥ and A(2)
⊥ . The main

reason of the above great di�erence in |QCT/QCF| may
be due to the contributions to ∆g‖ and A

(2)
‖ in both the

CF and CT mechanisms depending upon the third-order
perturbation terms [note: the second-order terms are ab-
sent according to the derivation, see Eq. (2)], whereas
those to ∆g⊥ and A

(2)
⊥ mainly from the second-order

perturbation terms. This leads the ratios |QCT/QCF| for
∆g‖ and A

(2)
‖ to be connected roughly with (ECT/ECF)2,

but those for ∆g⊥ and A(2)
⊥ roughly with ECT/ECF [see

Eq. (2)]. Since ECT/ECF < 0.5 (note: the calculated
ECF

1 ≈ 13240 cm−1 here), the above large di�erence in
the relative importance can be understood. In consider-
ation of the great relative importance of CT mechanism
to ∆g⊥ and A(2)

⊥ , in the rational and precise calculations
of spin-Hamiltonian parameters and the estimations of
the local structure of impurity centers (by analyzing the
spin-Hamiltonian parameters) for the high-valence state
dn ions in crystals, one should apply the method based
on the two-mechanism model.
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