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We investigate the dynamics of the spin-less relativistic particle subject to an external field of a harmonic

oscillator potential.

The Klein—Gordon equation with one- and three-dimensional vector and scalar parabolic

potentials is solved using the expansion of the wavefunction in properly selected basis-sets. The resonance states
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1. Introduction

Relativistic generalizations of the harmonic oscillator
(HO) are neither unique nor trivial. In the classical me-
chanics the relativistic description of the HO leads to the
frequency—amplitude dependence. A discussion of this
subject and references to the relevant works may be found
in a recent work by Belendéz et al. [1] where the analytical
approximations to the oscillation period and the periodic
solutions have been constructed. Studies on the quantum
models of the HO, performed in the 1930s, demonstrated
that quantum systems with electrostatic quadratic po-
tential have no bound solutions [2, 3]. Numerous stud-
ies on this subject may be represented by a set of refer-
ences [4-16], far from being complete. The most com-
monly known model of the relativistic HO for a spin-1/2
particle is the Dirac oscillator, usually associated with
the contribution by Moshinsky and Szczepaniak [7] but,
in fact, formulated nearly 20 years earlier by Cook [4].
It has been discussed in many works, including [17-23].
Another approach, also related to the one by Cook [4],
in which HO has been defined as a system described by
an equation invariant with respect to the transformation
p <> ar, where p and r stand, respectively, for the mo-
mentum and the coordinate operators and a is a con-
stant, has been applied to studies on both Klein—-Gordon
(KG) and Dirac oscillators in Refs. [11, 24, 25]. Some
authors have studied the Dirac and KG equations with
equal scalar and vector potentials using, in particular,
the oscillator potentials [26]. A class of exact solutions
of the mass-dependent KG equation has been obtained
using an analytical iteration method [27].

The purpose of this paper is solving the KG equations
with parabolic potentials in one- and three spatial di-
mensions using vector and scalar couplings [28]. The re-
sults are compared with a model of the KG HO derived
by Znojil from the spinless Salpeter equation [8]. As it
is well known, the KG equation with quadratic electro-
static potential, referred to as the vector potential has
no square-integrable solutions [2, 3]. This consequence of

the existence of the negative-energy continuum appears
in some one-particle systems e.g. in the KG HO with
the electrostatic potential, but not in the KG HO with
the scalar potential, and is inevitable in the case of rela-
tivistic many-particle systems where it appears as a con-
sequence of the so-called Brown-Ravenhall disease [29].
From several methods applicable to the evaluation of the
energies and the widths of the autoionizing states (the
resonances) [30] the complex coordinate rotation (CCR)
has been selected. This method has been successfully
used to solving autoionizing one-electron Dirac [31, 32]
and two-electron Dirac-Coulomb [33] problems. To the
author’s knowledge, as yet, it was not applied in the case
of the KG equation.

2. Basic equations
The stationary KG equation for a free particle
reads [28]:

Pp?¥(r) = (€& — m*c*) ¥(r), (1)
where all symbols have their usual meaning. The intro-
duction of an external electrostatic potential V(r) and a
scalar potential S(r) results in the substitution

Ex — Ex — V(r), me? — me? + S(r). (2)
Consequently, the KG equation for a particle in the ex-
ternal field may be written as

cp?¥ = [(Ek —V)? — (mc® +S)*] ¥, (3)
By setting the origin of the energy scale at the rest mass
of the particle, i.e. by the substitution

&k = & +mc?, (4)
the last equation may be rewritten in a Schrodinger-like
form

(;i+u>wzem (5)

where the effective potential U (energy-dependent in the
vector case) is given by

1 2 2
U=S+V+—5 (S -V +26V) (6)
and

(1226)


http://dx.doi.org/10.12693/APhysPolA.126.1226

Relativistic Generalizations of the Quantum Harmonic Oscillator

—e (14 555). ()

In the one-dimensional case
d2

I h2
P’ dz2’

If the external potentials are spherically symmetric then
by the substitution

F(r
wir) = Ty 0.0), ©
Eq. (5) may be reduced to the one-dimensional radial
equation with
2 I(+1)
2_ 32| 4"
pr=—h {er r? '

2.1. Vector KG harmonic oscillator
Taking S = 0 and
mw?2z2 mw?r

V(z) = 5 or V(r)= 5 (9)

we get, respectively, one-dimensional vector KG HO or
three-dimensional isotropic vector KG HO (VKG). Set-
ting A =1 and

2,2

&
¢ =zvmw, p=rymw, )\:%, E=—,
me w
=FE(24+ \E), w;=1+4+)\E, (10)
Eq. (5), in the one-dimensional case, becomes
(W —w) w(0) =0, (11)
where
¢ d? 2 4
WS = =g + wig? - 3% (12

As one can see, for sufﬁc1ent1y large z the negative quar—
tic term always dominate. The effective potential WV is
parabolic and positive for small z but diverges to minus
infinity for large z (see Fig. 1 and discussion in Ref. [11]).
The motion of the particle is unlimited since it tunnels
through the potential barrier. We can easily find that
the wave function takes the asymptotic form

W(() ~ eEEIVAC (13)

Therefore all solutions of Eq. (11) are shape resonances.
The KG equation for the spherical HO reads

(W, — w) F(p) = 0, (14)
where
&2 Ii+1) A
Y/ R A ) LA 1
v qE T e twe g (15)

This equation does not have bound solutions either since
the centrifugal term does not influence the behavior of
the effective potential in infinity.

2.2. Scalar KG harmonic oscillator

In this case V = 0. By taking
2,2 2,2
S(z) = o or S(r) = o, (16)
we get scalar KG harmonic oscillators (SKG). The gen-

eral form of the KG equations is the same as in Eqgs. (11)
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and (14) except that Wf, and W¢{, have to be replaced,
respectively, by

d?

W == qa + ¢+ 2t (17)
and by
2 I(+1 A
Wgz_ﬁjL (p2 )+p2+1p4. (18)

In this case the effective potential behaves as an infinite
quartic potential well — it approaches +oo for p — oo
and all states are bound.

2.3. Equally mized potentials

In this case we define

S(Z)ZV(Z):’”“;Z or S(r)=V(r)="=". (19)

After using variables (10) and rescaling once again coor-
dinates according to

mw27’2

AE
=V Q¢ or y=V02p, where 0= 1—!-7, (20)

corresponding KG equations may be transformed to the
forms

(_;2 ta ) U(x) = 2E0¥(z), (21)
(—éj + l(l; DN yz) F(y) =2EQF(y). (22)

The exact energy eigenvalues satisfy the algebraic equa-
tion

2AE? +4FE% — 2 =0, (23)
where € = 2n + 1 or € = 4n + 2] 4+ 3 for one-and three-
dimensional oscillators, respectively. Since energies cor-
responding to bound states should have real values, we
can find that they are given by

E=§/—5+¢Z+§/—5—¢Z—%, (24)

where
e2 [ —4 £
T (27A2 * 16) (25)
and
64 4e? gt
5% = - . 26
272)\6 274 + 162 ( )

The wave functions of the KG harmonic oscillators with
equally-mixed parabolic potentials, in variables x or y,
are the same as the nonrelativistic ones. The only dif-
ference is that they correspond to relativistic energies,
given by (24).
2.4. Znojil harmonic oscillator
The HO Hamiltonian
1
H = \/p2c2 + m2ct —mc® + §mw2r2, (27)

derived from the so-called spinless Salpeter equation, has
been used by Znojil [8] in his definition of relativistic HO.
This form of the HO is referred hereafter as Znojil har-
monic oscillator (ZHO). The corresponding eigenvalue
equation, in the momentum space has a Schrodinger-like
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form
mh2w? d? (l+1
B {_d? ( > )] ¥(p)
p p

+ (VPemic —me? ) up) = Evlp). (28)

Both one-dimensional and radial forms of the last equa-
tion may be easily written and solved numerically using
an arbitrary integration technique designed for solving
the Schrodinger equation.

3. Algebraic solutions

In this section the solutions of the HO equations by al-
gebraic methods are presented. The general form of the
equation is

(W—-w)® =0. (29)
In the algebraic approach the wave functions are ex-
panded in a properly selected basis ¢,,:

2= cuo (30)
n=0

and Eq. (29) is transformed to the algebraic eigenvalue
problem. In order to apply numerical procedures, we de-
fine a reduced problem by terminating the series at some
cutoff n = N. As a consequence, the pertinent algebraic
KG equation is transformed to a system of NV + 1 linear
equations, which can be written in the matrix form as

[M(W) —wI|C =0, (31)
where I is the unit matrix, CT = [co, ¢, ..., en],
M is the algebraic representation of the operator W for
which the eigenvalue problem has been defined. Depend-
ing on the case, the form of ¢, and the structure of W
varies. Scalar and vector oscillators in one-dimensional
and spherical cases are discussed in detail in the next
subsections.

The method of solution for the bound states is stan-
dard and straightforward. For the resonance states the
CCR method is used. The CCR method has been devel-
oped to study the autoionizing states also referred to as
resonances [30]. Its basic theorem states that the bound
state energies of a Hamiltonian do not change under the
complex rotation of coordinates,

r—re'? (32)
whereas the continua move to the complex plane.
The discrete eigenvalues appear as the isolated point
in the real axis while the points corresponding to the
resonances are located in the imaginary plane, either
above or below the real axis. After the CCR transfor-
mation the Hamiltonian matrix is non-Hermitian and
depends on 6. Its eigenvalues are complex and 6-
dependent. The #-dependence of the roots is represented
by curves in the complex plane, known as 8-trajectories.
For the optimum values of 6 the trajectories are nearly
f-independent. The real part of the corresponding eigen-
value of the CCR Hamiltonian matrix gives the best ap-
proximation to the energy of the discrete state and the
imaginary part — its width [30]. For the SKG the stan-
dard method of diagonalization of the reduced algebraic

A. Poszwa

eigenvalue problem (31) may be used. In the case of the
vector KG HO the Schur decomposition method has been
employed in this work. Since the matrix M is eigenvalue-
dependent, the diagonalization is performed by applying
at the same time an iterative, self-consistent procedure.

3.1. One-dimensional oscillators

Complex coordinate rotated operator (12) reads
Q2 ) AL
W%(Q) — _6—219d742+w1e21062_Ze41<9<4. (33)
The Hermite polynomials are a convenient choice for the
basis set used in the algebraization procedure. Thus,

_ 2

on(C) = Nae™ /2H,(¢), (34)
where H,, are Hermite polynomials and IV, is the normal-
ization constant [34]. The set {¢,(¢)} is orthonormal and
satisfies the second-order eigenvalue equation

d2

(-5 +) 906 = 21+ D60 (39)
After some algebra, taking into account the well-known
identities for (?H,,(¢) and ¢*H,,(¢) [34] we obtain matrix
representation of the operator (33):

M= [ T Dn(QOWS (9)n () dC =

Z A k0n nt2k, (36)
k=—2
where
1 : N,
Ap o =—=Xe*n(n —1)(n —2)(n — 3)—"—,
2= At n(n = 1(n ~ 2)(n - 3)
An,—l =
) 01 . N,
n(n—1) <e219w1—e_2‘0—4)\e419(2n—1)> 5N,

An,O =

1 1 . . 3 )
3 <n+2) (62‘01111—1—6_2‘9)—3—)\6419(2n2—i—2n—|—1)7

2
1 N,
An,lz(emgwl e 210 )\6410(27’L+3)) SNora’
A 40 Na
no=——¢e"'"'—= 37
27 71280 Npja (37)

To obtain the matrix M in a case of the scalar coupling
it is enough to change the sign of A and to set w; = 1,
6 = 0 in the matrix elements (37). In the non-relativistic
limit (A = 0) the matrix M becomes the diagonal one
for § = 0, whose eigenvalues w = 2n + 1 correspond to
the 2x energies of the one-dimensional HO.

3.2. Isotropic oscillators

Let us consider the VKG described by Eq. (14).
By looking for solutions of this equation in the form of
power series, one can observe that the power expansion
of the radial function F' contains only the even powers of
p [14]. Therefore, we define the variable

£=p’ (38)
and transform operator (15) to the form
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d (l+1) 1
W5 = —4f— — — )2
§d§2 & € w1g 1 £ (39)
Introducing the complex rotation
£ - £ol? (40)
we obtain
_ d (1+1)
Wf ig Qf— 9
+elfw & — Z)\e219£2. (41)
Let us define the basis set of Sturmian functions
on(€) = N 5 e ¢/2 LD (), (42)

where [ is fixed and Lg +1/2) are the generalized Laguerre
polynomials of a degree n =0,1,2,... and

so= (i) (43

Using the well-known properties of the generalized La-
guerre polynomials [34], one can find that the Stur-
mian functions (42) satisfy the second-order differen-
tial equation

d I(l+1) B
(e a0,
(4n + 20+ 3 = &) #u(), (44)
the orthogonality condition
| e ou@o 0 b (45)
and the relation
§Dn(§)=Dnidn11(§)+Enidn(§)+Dn_110n-1(§), (46)
where
Du=—yfn D1+ ), ()

which shall be employed in further calculations. Let us
note that the Sturmian functions (42) correspond to
the exact solutions of the Schrodinger radial equation
for the nonrelativistic spherical HO, energies of which
are given by

3
En=2n+1+ 3. (48)

Finally, matrix elements of the operator (41) defined as

Mon = [ €0 OWEO)0n(0)d¢ (19)
are given by

My =2 Y E, 16,m + (emwl — e_ig)Kl,/2

nmn

)\ 21032 (50)

where
Krrll//j = Dnlén’,nJrl + Enl(sn’n + anl,lén/,nfl (51)
and

K3/2_D77/1Kn/+1 n
Likewise one-dimensional potentials, one obtains the
SKG by changing the sign of A and setting w; =1,0 =0
in Eq. (50). In the nonrelativistic limit we can simply
obtain the energy eigenvalues (48), by taking A = 0 and

0 =0.

+E KM 4D, KM (52)

n’—1,n
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4. Perturbative approach

In the limit A < 1, relativistic energies E can be de-
termined perturbatively with respect to the A as the per-
turbation parameter. Substituting the perturbation ex-

pansions
o0 oo

U — Z g\ B = ZE(q))\q (53)
p=0 q=0

into KG Egs. (29) and equating appropriate coefficients

we obtain a set of the perturbation equations, ordered ac-

cording to the powers of \. For every kind of the potential

the zero-order equation corresponds to the Schrédinger

equation for the HO. After using the virial theorem, the

first- and the second-order energy corrections for the

state ¥(®) = |n), corresponding to the isotropic VKG
may be written as
1
1
By = —gnlr'ln), (54)
4 2
2) 0) EEM;@J@
EnV E Z E(o
k#n

2 2 4 2
o2y~ ki) ki) 2
D> 6423

= E® _EO E® _EO
7E,§1>E,<LO>. (55)

At this point we note that the perturbation method can
determine only approximate corrections to the real parts
of the resonance energies. For the isotropic SKG the first-
and second-order energy corrections read

1 1
Eyd = =5 (D) + g nlr'|n), (56)

2
(2) ‘ k|r4|n

= —EWEO®, (57)
nS 64 Z E(O) E(O)

In a similar way we may determine relativistic perturba-
tion energies for the ZHO described by Eq. (28). In the
case of 3D oscillator the first-order energy correction has
been derived in [8]. By replacing variable p — r we may
write the first- and the second-order relativistic correc-
tions in the following forms:

1
E\,) = *§<nlr4ln>, (58)
k\r4\ﬂ>|2 1
E(2) — | 6

Let us note that in the case of one-dimensional potentials,
the radial variable r should be replaced by the variable
x € (—00,00). Results of algebraic calculations are sum-
marized in Table I.

5. Results and discussion

In this work, we have carried out the detailed analysis
of the dynamics of the relativistic spin-0 particles moving
in an external field of the HO-type potentials, using one-
and three dimensional electrostatic and scalar parabolic
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potentials. In these cases, the eigenvalue problems have
been reduced to pure algebraic tasks, after transforming
the KG equations to the matrix forms, using the expan-
sions of wave functions into relevant basis set functions.
In the case of VKG, the parameters (energies and widths)
of the resonances created by the effective potentials are
obtained using the CCR technique. In the framework of
the CCR method, the complex energy eigenvalues
E=E - ig (60)
correspond to the stationary points of the #-trajectories

in the complex energy plane [30]. The example trajec-
tories are shown in Fig. 2. Introducing the trajectory
length, defined as

o= [ V(5 () o

we can find that the stability of the resonance locations
is achieved in the vicinity of stationary points 6, being
the solutions of the equation
dv(6)

w0 - 0. (62)
The example plot of the function dv(#)/d6 is displayed
in Fig. 3. The accurate value of 6,, can be determined
by solving the nonlinear equation (62) as well as by plot-
ting the logarithmic derivative of the function (), which
discloses the sharp cusp near the 6.

U(E,D)

ES
T

Fig. 1. Effective energy-dependent potentials ¢ = 1,2
corresponding to levels F3 = 1.5 and F»> = 3.5, respec-
tively. The effective coupling constant A = 0.4.

As a test, we have employed our numerical procedures
to the one-dimensional anharmonic oscillator (AO) given
by the Hamiltonian

1 1
Hao = §p2 + §x2 — Bt (63)
In Table IT the complex resonance energies of the one-

dimensional AQ are displayed and compared with the
results obtained on the basis of the operator method [35].
The maximal absolute error of each value does not exceed
41 on the last digits, in all of the tables.

In Table IIT the lowest four levels of the one-
dimensional ZHO are listed as functions of the coupling
constant A.

In Table III the first six levels of the one-
dimensional SKG and VKG are listed, for several values
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Fig. 2. Complex energy 0-trajectories (AE = E./Eo—
1, A’ = I'/Ty — 1) of the one-dimensional AO, for
states: (a) n = 4, (b) n = 5 and 8 = 0.1. Complex
energy f-trajectories for states: (c) n =4, (d) n = 5 and
the coupling constant 8 = 0.5. The values of Ey and I
correspond to the stationary points of trajectories.

. R o - —
0.40 0.45 0.50 9

Fig. 3. Dependence of the derivative of the function
~(0) corresponding to the state n = 4 of the one-
dimensional AO with § = 0.1. The zero corresponds
t0 Oop = 0.452.

of the coupling constant A\. We can see that energies of
the ZHO are close to the real parts of the VKG ener-
gies. For A = 0.1 the results are consistent on a level of
2 or 3 decimal figures. For lower A, higher accordance
is expected. This follows from Table I where perturba-
tion results are presented. The perturbation theory gives
equal first-order corrections for ZHO and VKG while
the second-order corrections are only slightly different.
The same is also observed for isotropic oscillators.

In Table V the resonance energies and the widths of
the 3D isotropic VKG are displayed as functions of the
oscillator frequency. One can see that for w < 1000 the
imaginary parts of the eigenvalues are negligible in com-
parison with the real parts. In this region, the resonance
energies may be approximated by real bound states en-
ergies. Using this approximation we neglect the tunnel-
ing by termination of the radial integrals at the radius
r = Ry, which corresponds to the maximum of the ef-
fective potential barrier. In the last column, energies E°
obtained in the framework of the power series expansion
method [14] are displayed. In the latter approach an ad-
ditional spherical confinement of the radius R, has been
introduced to perform the stabilization of the autoioniz-
ing resonances. As a consequence, the imaginary parts



of the complex resonance energies disappear. In this w-
region both methods are in perfect agreement.
Table VI shows the energies of the 3D isotropic SKG
and VKG for the states n < 2 and [ < 4, as functions of \.
The application area for the models presented in
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The power-law potentials of the form V(r)
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= A+ br”

are broadly accepted in the mass spectra investigations

this paper may be nuclear physics and the QCD [36].

of various quarkonia systems [37]. Some other potentials
with vector and scalar couplings have been studied in the
context of the diatomic potentials [38].

TABLE I
Relativistic first-and second-order energy corrections E(Y) and E® corresponding to SKG, VKG and ZHO. Following
deﬁnitions eC) = L(31n® + 31%) + 2L(93n + 431 + 136) + 145 (27902 + 611%) and ), = L (230> + (%) + 32L(23n + 91 +
32) + 155 (207n” + 3312) are used below

128

SKG VKG ZHO
one-dimensional potentials

EY —;3(10n2+10n+1) — 3 (2n+2n+1) —%(2n2+2n+1)

EY = (126n°+189n°+37n—13) = (460 +-69n°+3Tn+7) =5 (461346902 4+101n+39)

isotropic potentials

ES) | —&[10(2n+2043)+ 3 (20+3)(6147)] | —L[B3n(2n+20+3)+1(2043)(20+5)] | —L[3n(2n+20+3)+1(2043)(21+5)]
Ey(j) Sz)s+128(409n+97l+ 195) 5121)‘/—&—128(31371—1—67[—# 159) 5121)‘/+128(377 +831+ 255)
TABLE TI

Resonances parameters E, and I" in Ha as functions of the coupling constant 3 of one-dimensional AO and the comparison
with the operator method results F; and I'* [35]. The numbers in brackets are the powers of 10 by which the entries
are to be multiplied.

B State E. r/2 N Oop E} r</2
0.025 0 0.479116818226 7.2823867[—6] 34 0.372 0.479117 0.000007
1 1.38562392863 7.7481553[—4] 36 0.380 1.385667 0.000771
2 2.15723298518 2.1984206[—2] 38 0.390 2.157234 0.021984
3 2.77229261221 0.16049881 40 0.392
4 3.33183365658 0.49230095 40 0.396
5 3.93328149241 0.96255479 42 0.400
0.1 0 0.397440629821 4.4706148[—2] 36 0.443 0.397441 0.044706
1 1.09645186727 3.3866056[—1] 34 0.443
2 1.75258978764 9.6935273[—1] 36 0.447
3 2.49263538856 1.8011218 38 0.452
4 3.28721142455 2.7594569 40 0.452
5 4.12627756498 3.8241057 40 0.453
0.5 0 0.373873916781 0.30499025 42 0.490 0.373874 0.304990
1 1.20528560358 1.2575002 48 0.492 1.205286 1.257500
2 2.19878584648 2.6897011 56 0.494 2.198786 2.68970
3 3.32454304343 4.3682036 60 0.495
4 4.54958499992 6.2445312 66 0.497
5 5.85950089192 8.2853397 72 0.498
TABLE III
Energies of the one-dimensional ZHO as functions of A.
A n=20 n=1 n=2 n=3 n=4
0.001 0.499905378 1.49952461 2.49878283 3.49766135 4.49616551
0.01 0.499070883 1.49536013 2.48798251 3.47698092 4.46241259
0.1 0.491288900 1.45736637 2.39240766 3.29998374 4.18299556
1 0.441051722 1.23705506 1.90992951 2.51760364 3.07828307
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TABLE IV

Energies Eg for SKG and resonance parameters E, and I' for VKG in Ha as functions of effective coupling constant
A of one-dimensional oscillators. The values of N and 6., indicate the size of the basis and the optimal rotation angle

corresponding to this accuracy, respectively.

A State Eg N E,. r/2 N Oop
0.1 0 0.496666614032 14 0.490740861391 2.5349767[—12] 34 0.305
1 1.44032401463 14 1.45594824022 1.6434561[—11] 36 0.292
2 2.33839462096 14 2.39039162655 6.0324606[—11] 38 0.280
3 3.19826567100 16 3.29753613858 1.6512866][—10] 40 0.265
4 4.02548285848 18 4.18022447116 3.7540738[—10] 40 0.260
5 4.82433874665 20 5.04082434820 7.4966981[—10] 44 0.250
0.2 0 0.493054567932 16 0.481610529890 1.1074486]—6] 34 0.360
1 1.39031508087 18 1.41654984202 3.9337842[—6] 36 0.335
2 2.21708439057 20 2.29957185066 8.6996191[—6] 36 0.312
3 2.99070437157 22 3.14031570354 1.5409478[—5] 36 0.285
4 3.72229045403 26 3.94569369156 2.3960833[—5] 36 0.265
5 4.41948106379 28 4.72087075103 3.4203993[—5] 38 0.251
0.4 0 0.485500590162 20 0.462791292198 6.1410336[—4] 28 0.390
1 1.31014173396 22 1.34690806717 1.2783944[—3] 28 0.340
2 2.04091380364 24 2.15290561338 1.8983627[—3] 30 0.320
3 2.70880932312 26 2.90229326358 2.4580749[—3] 36 0.290
4 3.33065082616 30 3.60801434263 2.9597028[—3] 36 0.260
5 3.91676051403 32 4.27860775850 3.4095914[—3] 44 0.260
0.6 0 0.477927963416 22 0.443890625815 4.5734856[—3] 34 0.405
1 1.24760552561 24 1.28813612873 7.2269610[—3] 36 0.360
2 1.91474236567 26 2.03931624306 8.9593064[—3] 36 0.320
3 2.51733167372 30 2.72793138199 1.0179502[—2] 38 0.295
4 3.07438987214 32 3.37045820745 1.1083444[—2] 38 0.270
5 3.59696704476 34 3.97704925278 1.1777406]—2] 46 0.242
TABLE V

Resonances energies E, and widths I" in Ha for ground state of the isotropic VKG as functions of
the oscillator frequency w and comparison with the power series energies E° [14].

w E, r/2 N Oop EP
0.1 1.49999750385 1 1.49999750385
1 1.49997503931 2 1.49997503931
4 1.49990016780 2
5 1.49987521415 2 1.49987521415
10 1.49975047229 2 1.49975047229
20 1.49950112043 2
50 1.49875411717 2 1.49875411717
100 1.49751260292 2 1.49751260292
200 1.49504254359 4
400 1.49015336360 2.48[—53] 38 0.448
500 1.48773371791 1.351406[—42] 36 0.482 1.48773371791
1000 1.47587484316 2.7494179[—21] 30 0.584 1.47587484316
2000 1.45326001561 7.6655710[—11] 32 0.700
4000 1.41169543662 8.1705863[—6] 32 0.742
10000 1.30663269335 4.7464052[—3] 32 0.652
20000 1.19207935056 2.5847925[—2] 34 0.800
40000 1.06858500487 4.4571410[—2)] 34 0.780




Relativistic Generalizations of the Quantum Harmonic Oscillator

1233

TABLE VI

Energies Eg for isotropic SKG and resonance parameters E, and I' for isotropic VKG in Ha as functions of

effective coupling constant A, for several states (n,l).

) n | 1 Es N E, r/2 Bop N
0.1 0 0 1.44032401463 6 1.45594824022 1.64346[—11] 0.564 16
1 2.32942137333 6 2.40053970192 3.91777[—11] 0.562 16
2 3.17412762578 8 3.32573699904 6.14193[—11] 0.538 18
3 3.98176659289 8 4.23267527544 7.49480[—11] 0.520 18
4 4.75782094581 8 5.12240700713 7.71105[—11] 0.480 18
1 0 3.19826567099 10 3.29753613858 1.65129[—10] 0.515 18
1 4.01819853773 10 4.18903355731 2.93594[—10] 0.490 18
2 4.80438860715 10 5.06554181977 4.01972[—10] 0.465 18
3 5.56156220108 12 5.92770154557 4.59713[—10] 0.446 18
4 6.29342185732 12 6.77613236164 4.60331[—10] 0.420 18
2 0 4.82433874662 12 5.04082434819 7.49670[—10] 0.460 18
1 5.59212711390 12 5.88911345937 1.14254[—9] 0.440 20
2 6.33298830318 12 6.72545005181 1.44301[—9] 0.420 20
3 7.05020863046 12 7.55019992230 1.58452[—9] 0.410 20
4 7.74644764453 12 8.36373216418 1.56048[—9] 0.380 20
1 0 0 1.15394569334 14 1.20292495284 2.35728[—2] 0.780 30
1 1.71507475808 16 1.91677582400 1.53251[—2] 0.712 30
2 2.20926873750 16 2.57112789428 8.50659[—3] 0.652 30
3 2.66017387395 18 3.17868590387 4.37938[—3] 0.590 30
4 3.07986733340 18 3.74888519570 2.15794[—3] 0.540 30
1 0 2.26092439489 18 2.48882076584 2.49759[—2] 0.645 30
1 2.72705785648 18 3.07456468745 1.93057[—2] 0.600 30
2 3.15582182392 20 3.63535078156 1.29483[—2] 0.560 30
3 3.55719049268 20 4.17232484554 7.92841[—3] 0.510 30
4 3.93724437013 22 4.68738439127 4.55485[—3] 0.462 32
2 0 3.18843658067 20 3.57922995532 2.49540[—2] 0.560 32
1 3.60263524814 22 4.09546264691 2.07679[—2] 0.520 32
2 3.99163772291 24 4.59830080428 1.53731[—2] 0.460 32
3 4.36085916330 24 5.08708335380 1.04453[—2] 0.400 32
4 4.71396623992 26 5.56182567162 6.64300[—3] 0.368 32
[
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