
Vol. 126 (2014) ACTA PHYSICA POLONICA A No. 6

Shock Waves and Other Solutions

to the Benjamin�Bona�Mahoney�Burgers Equation

with Dual Power-Law Nonlinearity

G.-W. Wanga, T.-Z. Xua, R. Abazarib, Z. Jovanoskic and A. Biswasd,e

aSchool of Mathematics and Statistics, Beijing Institute of Technology, Beijing-100081, People's Republic of China
bYoung Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran

cApplied and Industrial Mathematics Research Group, School of Physical,

Environmental and Mathematical Sciences, UNSW Canberra, ACT 2600, Australia
dDepartment of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA

eDepartment of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah-21589, Saudi Arabia

(Received April 22, 2014)

We study the hybrid Benjamin�Bona�Mahoney�Burgers equation with dual power-law nonlinearity. Three
di�erent techniques � the ansatz method, Lie-symmetry analysis and the (G′/G)-expansion method � are used
to �nd shock wave solutions. Several constraint conditions naturally emerge that guarantee the existence of shock
waves. We discuss the nature of the solutions generated by the di�erent methods.

DOI: 10.12693/APhysPolA.126.1221

PACS: 02.30.Ik; 02.30.Jr; 02.20.Qs

1. Introduction

There are several forms of nonlinear evolution equa-
tions that are studied in the areas of applied mathe-
matics, theoretical physics and in the engineering sci-
ences [1�26]. Of particular interest is the dynamics of
shallow water waves governed by certain nonlinear evolu-
tion equations. In this context, one frequently encounters
the well known Kortweg�de Vries (KdV) equation, Pere-
grine equation, Kawahara equation, Gardner equation,
Gear�Grimshaw equation and the Bona�Chen equation.
These models exhibit single layered as well as two-layered
�uid �ow on lakes and shores.
Another well-known model, the Benjamin�Bona�

Mahoney (BBM) equation, models the dynamics of shal-
low water waves in the presence of advection. The model
considered in this paper extends the BBM equation by
including the so-called dual-power law nonlinearity and
is augmented by the explicit presence of a dissipative
perturbation term. The inclusion of these additional fea-
tures leads to the hybrid dissipative equation referred
to as the Benjamin�Bona�Mahoney�Burgers (BBM�B)
equation. The primary aim of this paper is to utilise
three di�erent approaches to �nd exact shock wave
solutions, also known as topological soliton solutions,
to the BBM�B equation.

2. Governing equation

The BBM�B equation that is studied is [5, 8]:

ut + aux +
(
b1u

n + b2u
2n
)
ux + cuxx + kuxxt = 0. (1)

The wave pro�le is represented by u(x, t). The coe�-
cient a represents the strength of advection or drifting,
while b1 and b2 measure the strengths of the two non-
linear terms with the exponent n being the power law
nonlinearity parameter. Finally, the parameters c and k

are the dissipative di�raction coe�cient and the higher-
order spatio-temporal dispersion coe�cient, respectively.
Thus Eq. (1) models the shallow water wave �ow on lakes
and beaches with a dissipative factor that is given by
the coe�cient c.
Equation (1) is not integrable by the inverse scattering

transform. Therefore we resort to other integration tools
that are fully discussed in the sections that follow. These
mathematical tools include the ansatz method, the Lie-
symmetry approach and the G′/G-expansion method.
Utilising these three integration architectures we �nd ex-
act 1-soliton solutions and derive parameter constraint
equations that are necessary to ensure the existence of
these solutions.

3. Ansatz approach

This section focuses on extracting the shock wave so-
lution to Eq. (1). The starting point is to select the
travelling wave ansatz given by

u(x, t) = A tanhp τ, τ = H(x− λt). (2)

Here, the shock wave is described by the four parameters
A, H, λ and p. The parameters A and H represent, re-
spectively, the dilation factor (amplitude) and the steep-
ening factor of the wave, whereas λ is the speed of the
wave. The shape parameter p is determined upon the
application of the balancing principle.
Substituting (2) into (1) gives

(a− λ)
(
tanhp−1 τ − tanhp+1 τ

)
+b1A

n
(
tanhnp+p−1 τ − tanhnp+p+1 τ

)
+b2A

2n
(
tanh2np+p−1 τ − tanh2np+p+1 τ

)
+cH

{
(p−1)tanhp−2τ−2p tanhpτ+(p+1)tanhp+2τ

}
(1221)
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−kλH2
[
(p−1)(p− 2) tanhp−3 τ

−
{

2p2+(p−1)(p−2)
}

tanhp−1 τ

+
{

2p2 + (p+ 1)(p+ 2)
}

tanhp+1 τ

−(p+ 1)(p+ 2) tanhp+3 τ
]

= 0. (3)

By the balancing principle, equating the exponents 2np+
p+ 1 and p+ 3 leads to p = 1/n. It should be noted that
the same result is arrived at when 2np+p−1 and p+1 are
equated to each other. Further, there are two standing
alone perturbation terms expressed through tanhp−2 τ
and tanhp−3 τ . Therefore, setting their coe�cients to
zero leads to the solution p = 1, which immediately im-
plies that n = 1. Thus, the BBM�B equation with dual
power-law nonlinearity reduces to the BBM�B equation
with dual nonlinearity, thus (1) can now be recasted as

ut + aux +
(
b1u+ b2u

2
)
ux + cuxx + kuxxt = 0. (4)

Finally, setting the coe�cients of the remaining linearly
independent functions tanhj τ , (j = 0, 1, 2, 3, 4) in (3)
to zero leads to

λ =
a

1− 2kH2
, (5)

λ =
a− b2A2

1− 8kH2
, (6)

b1A = 2cH, (7)

b2A
2 = 6λkH2. (8)

Now, from (5) and (6), equating the two values of the
speed λ gives

b2A
2 − 2kb2A

2H2 − 6akH2 = 0. (9)

In terms of the model parameters a, b1, b2, c and k, the
wave parameters are

A =
1

b1

√
2b2c2 − 3ab21k

kb2
, (10)

H =

√
2b2c2 − 3ab21k

4kb2c2
, (11)

λ =
2b2c

2

3b21k
, (12)

which completely characterises the topological 1-soliton
solution.

4. Lie-symmetry analysis

We now turn to the Lie-symmetry architecture to con-
struct the solution to the BBM-B Eq. (1).

4.1. Constructing in�nitesimal generators

In this section we perform a Lie group analysis of (1).
We assume (1) is invariant under a one-parameter Lie
group of point transformations

t∗ = t+ ετ(x, t, u) + O(ε2),

x∗ = x+ εξ(x, t, u) + O(ε2),

u∗ = u+ εη(x, t, u) + O(ε2), (13)

with in�nitesimal generator

V = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
. (14)

If the vector �eld (14) generates a symmetry of (1), then
V must satisfy the Lie invariance condition

pr(3)V (∆)|∆=0 = 0, (15)

where ∆ = ut + aux +
(
b1u

n + b2u
2n
)
ux + cuxx + kuxxt.

Applying the third prolongation pr(3)V to (18), we �nd
the following system of symmetry equations:

ηt = Dx(η)− uxDx(ξ)− utDx(τ) =

Dx(η − ξux − τut) + ξuxx + τuxt =

ηx + (ηu − ξx)ux − τxut − ξuu2x − τuuxut,

ηt = Dt(η)− uxDt(ξ)− utDt(τ) =

Dt(η − ξux − τut) + ξuxt + τutt =

ηt − ξtux + (ηu − τt)ux − τtut − ξuuxut − τuu2t ,

ηxx = Dx(ηx)− uxtDx(τ)− uxxDx(ξ) . . . ,

ηxxx = Dx(ηxx)− uxxtDx(τ)− uxxxDx(ξ) . . . ,

ηxxt = Dt(η
xx)− uxxtDt(τ)− uxxxDt(ξ) . . . , (16)

and the invariant condition now reads

ηt + aηx + b1u
nηx + b2u

2nηx + b1nηuxu
n−1

+2b2nηuxu
2n−1 + cηxx + kηxxt = 0. (17)

Here, Di denotes the total derivative operators

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · , i = 1, 2,

and (x1, x2) = (t, x).

Then, in terms of the Lie-symmetry analysis, one
can get

τ = c1, ξ = c2, η = 0,

where c1 and c2 are arbitrary constants. Equation (1)
admits the two-dimensional Lie algebra, called the prin-
ciple algebra, with basic operators [11]:

V1 =
∂

∂t
, V2 =

∂

∂x
.

It is easy to check that the symmetry generators form a
closed Lie algebra

[V1, V2] = 0, [V2, V1] = 0. (18)

To obtain the group transformation generated by the
in�nitesimal generators V1 and V2, we solve the following
initial value problems:

d(x̄(ε))

dε
= ξ
(
x̄(ε), t̄(ε), ū(ε)

)
, x̄(0) = x,

d(t̄(ε))

dε
= τ

(
x̄(ε), t̄(ε), ū(ε)

)
, t̄(0) = t,

d(ū(ε))

dε
= η

(
x̄(ε), t̄(ε), ū(ε)

)
, ū(0) = u, (19)

where ε is a small parameter. So, we obtain the Lie-
symmetry group
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g : (x, t, u)→ (x̄, t̄, ū).

Exponentiating the in�nitesimal symmetries of (1), we
get the one-parameter groups gi(ε) generated by Vi (i =
1, 2):

g1 : (x, t, u) 7→ (x, t+ ε, u),

g2 : (x, t, u) 7→ (x+ ε, t, u).

The symmetry groups g1 and g2 demonstrate the time-
and space-invariance of the equation. Consequently, we
obtain the Theorem
Theorem 1 If u = f(x, t) is a solution of third-order

equation (1), so are the functions

g1(ε) · f(x, t) = f(x− ε, t),
g2(ε) · f(x, t) = f(x, t− ε). (20)

4.2. Symmetry reductions
and exact group invariant solutions

By balancing the nonlinear term with that of the
highest order partial derivative in (1), similar to
that of the ansatz method discussed above, we make
the transformation

u(x, t) = f(ξ)
1
n , (21)

where f(ξ) is a non-zero real-valued function of the single
independent variable ξ.

4.2.1. In�nitesimal generator V1
The group-invariant solution corresponding to V1

where ξ = t is the group-invariant is obtained by sub-
stituting (21) into (1) and leads to f ′(ξ) = 0. Upon inte-
grating, leads to the trivial solution u(x, t) = C, where
C is a constant.

4.2.2. In�nitesimal generator V2
For the generator V2, where ξ = x is the group-

invariant, reduces (1) to the ordinary di�erential equa-
tion (ODE):

n(a+ b1f + b2f
2)ff ′ + c(1− n)(f ′)2 + cnff ′′ = 0,

where f ′ is the derivative with respective to ξ.

4.2.3. In�nitesimal generator V1 + λV2
For the linear combination V1 + λV2, where ξ = x− λt

is the group-invariant, leads to the ODE:

n2(a− λ+ b1f + b2f
2)f2f ′ + cn(1− n)f(f ′)2

+n2cf2f ′′ − kλ(1− n)(1− 2n)(f ′)3

−3nkλ(1− n)ff ′f ′′ − n2kλf2f ′′′ = 0. (22)

If λ 6= 0, then the solution to (22) is in the form of a
travelling wave with speed λ.
By applying the generalised algebraic method to (22),

one can obtain explicit travelling wave solutions [6]. Be-
cause the detailed description of the method can be found
in [6], we omit it here and consider its application to the
BBM�B equation with dual power-law nonlinearity.
Suppose that (22) can be written as

f(ξ) =

p∑
i=0

aiϕ
i(ξ), (23)

where ai (i = 0, . . . , p) are constants to be determined
for some positive integer p and that the functions ϕ(ξ)
satisfy the Riccati equation

ϕ′ = A+Bϕ+ Cϕ2. (24)

By balancing terms in (22), we get p = 1, so that in this
case

f(ξ) = a0 + a1ϕ. (25)

Substituting (25) into (22) and using (24), then collect-
ing coe�cients of monomials of ϕ with the aid of maple,
followed by setting each coe�cient to zero, we get for any
positive n the following parameter values:

a =
kλ(Ba1 − 2Ca0)2 − (Bc− nλ)na21 + 2Ccna0a1

n2a21
,

A =
a0(Ba1 − Ca0)

a21
,

b1=
Ckλ(n+1)(n+2)(Ba1−2Ca0)−n(n+1)Cca1

n2a21
,

b2 =
C2kλ(n+ 1)(2n+ 1)

n2a21
. (26)

where B,C, c, k, a0, a1, λ are arbitrary constants. The so-
lutions read

f(ξ) =
∆a1
2C

[
1− tanh

(
∆

2
ξ

)]
, (27)

f(ξ) =
∆a1
2C

[
1− coth

(
∆

2
ξ

)]
, (28)

f(ξ) =
∆a1
2C

[1− (tanh (∆ξ)± i sech (∆ξ))] , (29)

f(ξ) =
∆a1
2C

[1− (coth (∆ξ)± csch (∆ξ))] , (30)

f(ξ)=
∆a1
4C

[
2−

(
tanh

(
∆

4
ξ

)
+ coth

(
∆

4
ξ

))]
. (31)

f(ξ) =
∆a1
2C

[
1 +

γ+ − E cosh(∆ξ)

F + E sinh(∆ξ)

]
, (32)

f(ξ) =
∆a1
2C

[
1− γ− + E sinh(∆ξ)

F + E cosh(∆ξ)

]
, (33)

f(ξ) = a0

[
1− ∆−B

∆ tanh(∆
2 ξ)−B

]
, (34)

f(ξ) = a0

[
1− ∆−B

∆ coth(∆
2 ξ)−B

]
, (35)

f(ξ) = a0

[
1− ∆−B

∆ tanh(∆ξ)−B ± i∆sech(∆ξ)

]
, (36)

f(ξ) = a0

[
1− ∆−B

∆ coth(∆ξ)−B ±∆csch(∆ξ)

]
, (37)

with ∆ = (2Ca0 − Ba1)/a1 > 0, γ± =
√
F 2 ± E2,

where F and E are two non-zero real constants satisfy-
ing F 2−E2 > 0. Additional solutions can be obtained in
terms of trigonometric functions under the substitution
∆→ i∆.
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5. The (G′/G)-expansion method

The objective of this section is to use the (G′/G)-
expansion method [14] to solve the BBM�B Eq. (1).
As we have done previously, we assume the solution to (1)
can be expressed as a travelling wave

u(x, t) = U(ξ), ξ = x− λt, (38)

where λ is a constant and prime denotes the derivative
with respect to ξ. Substituting U(ξ) with wave variable
ξ in (1) then integrating once and setting the constant of
integration to zero, we �nd(

a−λ+
b1
n+1

Un+
b2

2n+1
U2n

)
U+cU ′−kλU ′′=0. (39)

In setting the constant of integration to zero does reduce
the generality of the solution of (39). However, if U(ξ)
has at least one tail that asymptotically approaches zero,
such as a shock wave, then setting the constant of inte-
gration to zero is perfectly reasonable. Periodic solutions
are also possible although there is a loss of an arbitrary
constant in the �nal solution [15]. Making the transfor-

mation U(ξ) = f(ξ)
1
n in (39) yields

n2
(
a− λ+

b1
n+ 1

f +
b2

2n+ 1
f2
)
f2 + cnff ′

−kλ(1− n)(f ′)2 − nkλff ′′ = 0, (40)

where f(ξ) is a real non-zero function.
According to the (G′/G)-expansion method [14] the

function f(ξ) is expressed as a polynomial in (G′/G):

f(ξ) =

m∑
i=1

ai

(
G′

G

)i
+ a0, am 6= 0. (41)

where ai (i = 0, 1, . . . , m) are constants to be determined
and G(ξ) satis�es a second-order linear ordinary di�er-
ential equation

d2G(ξ)

dξ2
+ ν

dG(ξ)

dξ
+ µG(ξ) = 0, (42)

where ν and µ are arbitrary constants. The general so-
lutions to (42) are

G′(ξ)

G(ξ)
=


√
β
2

(
C1 sinh(

√
β
2 ξ)+C2 cosh(

√
β
2 ξ)

C1 cosh(
√
β
2 ξ)+C2 sinh(

√
β
2 ξ)

)
−ν2 , β > 0,

√
−β
2

(
−C1 sin(

√
−β
2 ξ)+C2 cos(

√
−β
2 ξ)

C1 cos(

√
4µ−λ2

2 ξ)+C2 sin(
√
−β
2 ξ)

)
−ν2 , β < 0,

(43)

where β = ν2 − 4µ and C1, C2 are arbitrary constants.
By considering the homogeneous balance between f4

and ff ′′ in (40) we get 4m = 2m+2, hencem = 1. Then,

f(ξ) = a0 + a1

(
G′

G

)
, a1 6= 0. (44)

Following Wang et al. [14], substituting (44) into (40)
and using (42), we get the following constraints on the
parameters:

µ = 0,

λ =
n(an− νc)
n2 + kν2

,

b1 =
(n+ 1)

(
νkna(n+ 2)− ν2kc(n+ 1) + cn2

)
n(n2 + kν2)

√
k(n+1)(2n+1)(an−νc)

nb2(n2+kν2)

,

a0 = 0,

a1 = ±

√
k(n+ 1)(2n+ 1)(an− νc)

nb2(n2 + kν2)
,

where ν 6= 0 with n, b2, c, a, k being arbitrary. The so-
lution is

f(ξ) = ±

√
k(n+ 1)(2n+ 1)(an− λc)

nb2(n2 + kλ2)

(
G′

G

)
.

Since µ = 0, then hyperbolic functions only appear in
the solutions(
G′

G

)
=

√
ν2

2

(
C1 sinh(

√
ν2

2 ξ)+C2 cosh(
√
ν2

2 ξ)

C1 cosh(
√
ν2

2 ξ)+C2 sinh(
√
ν2

2 ξ)

)
−ν

2
. (45)

From (45) we get the wrong impression that there are
two arbitrary constants, C1 and C2. In fact there is only
one, C = C2/C1 (or D = C1/C2). The solutions may be
rewritten as

f(ξ) = ±

√
k(n+ 1)(2n+ 1)(an− νc)

nb2(n2 + kν2)

×

[√
ν2

2

(
tanh(

√
ν2

2 ξ) + C

1 + C tanh(
√
ν2

2 ξ)

)
− ν

2

]
, (46)

f(ξ) = ±

√
k(n+ 1)(2n+ 1)(an− νc)

nb2(n2 + kν2)

×

[√
ν2

2

(
1 + C coth(

√
ν2

2 ξ)

coth(
√
ν2

2 ξ) + C

)
− ν

2

]
. (47)

It is possible to further simplify these solutions

f(ξ) = ±

√
k(n+ 1)(2n+ 1)(an− νc)

nb2(n2 + kν2)

×

[
tanh

(√
ν2

2
(ξ + ξ0)

)
− ν

2

]
, (48)

f(ξ) = ±

√
k(n+ 1)(2n+ 1)(an− νc)

nb2(n2 + kν2)

×

[
coth

(√
ν2

2
(ξ + ξ0)

)
− ν

2

]
, (49)

where

tanh

(√
ν2

2
ξ0

)
= C.

These results show that there is both a topological soli-
ton (shock wave) solution (48) and a singular soliton so-
lution (49) available for the BBM�B equation.
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6. Discussion

We have used three seemingly di�erent approaches in
an attempt to �nd travelling wave solutions to the hy-
brid BBM�B equation (1). The ansatz method produced
only one solution where as the Lie-symmetry method and
the (G′/G)-method produced multiple solutions. It is
tempting to claim that these solutions are all new. Many
have claimed this in previous studies of other nonlin-
ear evolution equations (see for example [16�19]. Re-
cently, Parkes [20, 21] and Kudryashov [22, 23] have crit-
icised such claims. They showed convincingly that in
most cases the new solutions are merely old solutions
in disguise.
It is well known that for every tanh solution (27)

(or (48)) there is a coth solution (28) (or (49)), being
related via the substitution ∆ξ → ∆ξ − iπ/2. Solu-
tions of the tanh− coth type (31) are disguised coth so-
lutions [21] and are related via the hyperbolic identity
2 coth(∆ξ/2) = tanh(∆ξ/4) + coth(∆ξ/4). Further, (29)
can be expressed as (30) via ∆ξ → ∆ξ − iπ/2, which
in turn (30) can be reduced to (28) or (27) by using
coth(∆ξ/2) = coth(∆ξ) + csch(∆ξ) or tanh(∆ξ/2) =
coth(∆ξ)− csch(∆ξ).
Also, Eqs. (34) to (37) are related and can be recast

as either (27) or (28), this is most easily seen by setting
B = 0. Likewise, on setting F = 0, (32) and (33) can be
reduced to (28) and (27), respectively.
However, the singular soliton solution (28) is not a

bound solution and as such may have no physical mean-
ing in the context of (1). The unbounded increase in
the amplitude of the wave may be due to wave-breaking
or �lamentation, in either case signalling an instabil-
ity of some kind. Moreover, solutions of the type (29)
are clearly complex in contradiction to the requirement
that f(ξ) be real in both the Lie-symmetry method and
(G′/G)-method. As such these solutions must be dis-
counted, however, often they are not (see [24�26] as il-
lustrative examples).

7. Conclusions

We have derived and discussed the shock wave and
other solutions for the dissipative shallow water wave
equation governed by the BBM�B equation with dual
power-law nonlinearity. The shock wave solution (27),
often referred to as a topological soliton solution, is ob-
tained using three approaches � the ansatz method, Lie-
symmetry method and the (G′/G)-expansion method.
The latter two approaches also provide singular soli-
ton solutions (such as (28) or (49)) however these so-
lutions are useful only if they are physical meaningful.
We demonstrated that the multiple solutions obtained
via the Lie-symmetry and (G′/G)-method are not new
solutions but disguised solutions of (27) and (28).
In relation to the shock wave solution of (1), solu-

tions (2), (27), and (48) (for n = 1) are essentially the
same. This is not surprising as all three methods are
reformulations of the well know tanh-expansion method

[21, 23]. Any di�erences in the solutions are wholly at-
tributable to the slightly di�erent constraints that are
applied in each case.
The ansatz method is the most direct and e�cient of

the three methods although using a symbolic computer
package such as maple or mathematica makes the cal-
culations in all cases rather straightforward.
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