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Fractional quantum Hall e�ect is a remarkable behaviour of correlated electrons, observed exclusively in two
dimensions, at low temperatures, and in strong magnetic �elds. The most prominent fractional quantum Hall
state occurs at Landau level �lling factor ν = 1/3 and it is described by the famous Laughlin wave function,
which (apart from the trivial Gaussian factor) is an example of Jack polynomial. Fermionic Jack polynomials also
describe another pair of candidate fractional quantum Hall states: Moore�Read and Read�Rezayi states, believed
to form at the ν = 1/2 and 3/5 �llings of the second Landau level, respectively. Bosonic Jacks on the other hand
are candidates for certain correlated states of cold atoms. We examine here a continuous family of fermionic Jack
polynomials whose special case is the Laughlin state as approximate wave functions for the 1/3 fractional quantum
Hall e�ect.
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1. Introduction

Numerical calculations of wave functions for fractional
quantum Hall (FQH) e�ect [1] involve exact diagonaliza-
tion of the electron�electron interaction Hamiltonian [2].
The computational power needed for these calculations
grows exponentially with the number of particles. One of
several methods proposed to decrease computation time
involves the expansion of certain Jack polynomials, called
�Jacks� [3] (the antisymmetric/fermionic Jacks for the
electrons, and the standard symmetric Jacks for the anal-
ogous states of bosonic cold atoms), indexed by a nega-
tive rational number in the monomial basis. Speci�cally,
the coe�cients of the Jack polynomials in the monomial
basis are the unnormalized expansion coe�cients of the
corresponding quantum many-electron Jack states in the
con�guration basis.
The FQH wave functions which have been realised to

be Jack states include Laughlin (at the Landau level
�lling factor ν = 1/r, with r odd) [4], Moore�Read
(ν = 1/2) [5] and Read�Rezayi (ν = 3/5) [6] states.
Most computations are carried out in spherical geometry
introduced by Haldane [7]. The Jack polynomials may
be mapped onto the Haldane sphere and then compared
with the exact numerical ground states from Hamiltonian
diagonalization by overlapping both functions.

2. Jack polynomials

The Jack polynomial is a symmetric polynomial in-
dexed by two parameters: partition λ and a real num-
ber α [8]. The partition is a sequence λ = (λ1, λ2, λ3...),
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of non-negative integers in weakly decreasing order. The
non-zero elements of the sequence are parts of λ. The
number of parts is the length of λ and it is denoted by
`(λ). The sum of parts of λ is called weight and it is de-
noted by |λ|. The symbol m(λ, i) is the number of parts
of λ equal to i. One can de�ne natural order as follows: λ
dominates µ (written as: λ ≥ µ) when for every natural
number i, the sum of the �rst i parts of λ is greater or
equal to the sum of �rst i parts of µ. Λn is the ring of
symmetric polynomials of n variables, de�ned as a direct
sum over k of sets of homogeneous, symmetric polyno-
mials of n variables and degree k, including also the zero
polynomial. The monomial symmetric functions mλ are
de�ned as:

mλ =
∑

α∈A
xα1
1 · x

α2
2 · ... · xαn

n , (1)

where A is the set of all distinct permutations of λ.

The Jack polynomials are de�ned as the eigenvectors
of a certain di�erential operator: Hamiltonian in the
Calogero�Sutherland�Moser model given by

HCMS = α
∑
i

(xi∂i)
2

+
∑
i<j

xi + xj
xi − xj

(xi∂i − xj∂j). (2)

The Jack polynomials are well-de�ned for all positive
and almost all negative values of parameter α (each Jack
indexed by a particular partition λ has a �nite number of
negative poles). The expansion of Jack in terms of mono-
mial symmetric functions has non-zero elements only for
those mµ which are indexed by partitions µ dominated
by the partition λ of the Jack itself

Jαλ =
∑
µ≤λ

vλµmµ. (3)

The recursion formula for vλµ coe�cients has been de-
rived [9]. Starting from vλλ = 1, other coe�cients can
be calculated using
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vλµ =
1

eλ − eθ

∑
µ≤θ≤λ

Cµθvλµ. (4)

For eλ � eigenvalue of HCSM of n-variable Jack indexed
by λ:

eλ =

`(λ)∑
i=1

(
αλ2i + (n+ 1− 2i)λi

)
(5)

and Cµθ are non-zero coe�cients only if there exist i, j, l
such: θ = (µ1, µ2, . . . µi − l, . . . µj + l, . . . µn, )∗, for
∗ � rearranging component of a vector, to a partition.
Then, for µi − l 6= µj + l:

Cµθ = (µi − µj)m(θ, µi − l) ·m(θ, µj + l), (6)

or half of this expression for µi − l =µj + l.

3. Fermionic Jack polynomials

Since the Jack polynomial is a symmetric function,
it can only describe boson states. To obtain functions
describing fermionic states one can use the canonical
transformation from the ring of symmetric functions into
the ring of antisymmetric functions � multiplication by
Vandermonde determinant

∏
i<j

(xi − xj). The antisym-

metrized Jack, also called the fermionic Jack [10] is hence
de�ned as:

Sαλ+δ = Jαλ
∏
i<j

(xi − xj), (7)

where δ = (n − 1, n − 2, . . . 1, 0), addition of partitions
is de�ned by adding parts of partitions indexed by the
same number.
Fermionic Jacks are the eigenvectors of the fermionic

Laplace�Beltrami operator � HF
LB:

HF
LB = HKIN +

1

2

(
1

α
− 1

)
HINT. (8)

For

HKIN =
∑
i

(xi∂i)
2
, (9)

and

HINT =
∑
i<j

xi + xj
xi − xj

(xi∂i − xj∂j)−
x2i + x2j

(xi − xj)2
. (10)

Using this property one can calculate the coe�cients of
fermionic Jacks in the Slater determinant basis [10, 11].

4. Jack states

Bosonic Laughlin wave function can be represented
as a product of the Gaussian function and a symmetric
Jack polynomial. Therefore an (unnormalized) bosonic
state at �lling factor ν = 1/r for even r may be ex-
pressed as [12]:

ΦrL(x1, x2, ...xn) exp

(
− 1

4`2B

∑
i

|xi|2
)
. (11)

For `B � magnetic length, where ΦrL(x1, x2, ...xn) is a
Jack polynomial, given by

ΦrL(x1, x2, ...xn) = J
α1,r

λ0(1,r)(x1, x2, ...xn). (12)

For λ0(1, r) given by λ0(1, r) = ((n−1)r, (n−2)r, ..., r, 0)
and αk,r = −(k + 1)/(r − 1).
Fermionic Laughlin wave functions are also Jack states.

The polynomial part of the ν = 1/r wave function for odd
r is a fermionic Jack polynomial indexed by partition
λ0(1, r) and α = −2/(r − 2).

5. Jack polynomials and pseudopotential

The Laughlin wave function describes fractional quan-
tum Hall e�ect states under assumption of special form
of the e�e interaction pseudopotential (interaction en-
ergy V as a function of relative pair angular momentum
m) � short-range repulsion. This pseudopotential takes
non-zero value only for V (m = 1). We examined the
overlaps of fermionic Jack functions indexed by partition
λ0(1, r) and the FQH wave functions obtained from di-
agonalization of a Hamiltonian with the special form of
the interaction pseudopotential. This peudopotential is
nonzero only at m = 1 and 3, and may be indexed by a
single real number β de�ned as follows:

V (m = 1) = 1, V (m = 3) = β. (13)

We examine the overlaps in the neighbourhood of αk,r
and for β = 0 we expect to �nd the overlap equal to 1
for this point (Fig. 1).

Fig. 1. Overlap of the 7 particle wave function for state
ν = 1/3, modeled with short-range repulsionpseudopo-
tential (β = 0) and the fermionic Jack indexed by the
partition λ∗ = (18, 15, 12, 9, 6, 3, 0) in the neighborhood
of α = −2.

Along with the increase of β, the overlaps of func-
tions slightly decreased, but for βless than roughly 0.5
the shape of the curve remains almost the same (Fig. 2).
When β drops to about 0.5 (i.e., the shape of the pseu-
dopotential through the leading three values at m = 1,
3, 5 is no longer strictly convex [13]) the fermionic Jack
rapidly loses overlap with the exact ground state wave
function and it is no longer a good approximation of the
system (Fig. 3).
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Fig. 2. Overlap of the 7 particle wave function for state
ν = 1/3, modeled with generalized pseudopotential for
β = 0.3 and the fermionic Jack indexed by a partition
λ∗ in the neighborhood of −2.

Fig. 3. Overlap of the 7 particle wave function for state
ν = 1/3, modeled with generalized pseudopotential for
β = 0.6 and the fermionic Jack indexed by a partition
λ∗ in the neighborhood of −2.

4. Conclusions

We examined fermionic Jack polynomials as the candi-
dates for approximate FQH wave functions for the special
type of e�e interaction pseudopotential relevant for the
fermionic Laughlin state ν = 1/3 in the lowest Landau
level. We have performed the calculations for fermionic
Jacks indexed by a particular partition which produces
exact description of the Laughlin wave function for a par-
ticular choice of parameter α = −2, and for exact many-
electron ground states of a model interaction pseudopo-
tential with repulsion range controlled by the parame-
ter β. The expansion coe�cients of fermionic Jack poly-
nomial in the Slater determinant basis are continuous
with respect to parameter α. Moreover, the Hamiltonian
as a matrix is a continuous function of its coe�cients.
Therefore obtained overlaps are close to the unity for
small β and in close neighbourhood of α = −2. However,
when the range of repulsion is increased to the point when
pseudopotential in no longer convex, the resulting ground
state is no longer described by the Jack polynomial.
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