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Tunneling Control of Optical Properties of a Quantum Well

from Adjacent Quantum Well

by Coherent Population Trapping E�ect
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The coherent population trapping e�ect in double tunnel-coupled quantum wells is analyzed. One of two
quantum wells interacts with the two-frequency laser radiation and low-frequency �eld, thus forming a closed
contour of excitation. It is possible to control the excited level population in such a scheme of excitation by
changing relative phases of the �elds in the coherent population trapping state. The quantum well is bound to
the other quantum well by tunnel coupling of the excited levels, therefore the population and optical properties
of the other quantum well depend on the coherent population trapping state in the �rst quantum well and can be
controlled.
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1. Introduction

At present the coherent population trapping (CPT) ef-
fect attracts a considerable attention of researchers. The
essence of this e�ect is the appearance of a speci�c super-
position of long-lived states in a multilevel quantum sys-
tem that interacts with a two-frequency coherent (typi-
cally, laser) �eld [1]. This superposition state (dark state)
does not interact with the �eld. Dark resonances were
investigated theoretically [2] and experimentally in semi-
conductor quantum wells based on InGaAs/AlInAs [3]
and GaAs [4]. Dark resonances are particularly promis-
ing for the development of devices for recording and stor-
ing quantum information [5] and also for quantum logic
elements [6]. The methods of recording and reading of
qubits with a high degree of �delity were realized on the
basis of the CPT resonance in the atoms inside an optical
lattice.

2. Level system and mathematical model

The goal of our work was to study dark reso-
nances in semiconductor double tunnel-coupled quantum
wells (Fig. 1).

2.1. Excited states in the conduction band

Excited resonant states in the conduction band split
into two levels |4〉 and |5〉 due to tunnel coupling (the
barrier between the wells is permeable). States |4〉 and
|5〉 have wave functions which are symmetric and anti-
symmetric combinations of the wave function in a single
quantum well.

2.2. Ground states in the valence band

We consider two sublevels |1〉 and |2〉 in the left quan-
tum well and one sublevel |3〉 in the right quantum well.
Level |3〉 is not in resonance with levels |1〉 and |2〉, and

therefore tunneling through the barrier in the valence
band is hindered. Nevertheless, mixing of populations
between lower levels does occur because of imperfection
of well boundaries and level broadening (γij , i, j = 1, 2, 3
in Fig. 1).

Fig. 1. Structure consisting of double tunnel-coupled
quantum wells. Here∆1,2,3 are laser detunings of optical
�elds, Ω1,2,3 are Rabi frequencies of optical �elds and V
is the Rabi frequency of infrared �eld, 2∆ is tunneling
splitting, Φ is the relative phase of �elds Ω1, Ω2 and V
in the left QW.

2.3. Interaction with electromagnetic �eld

States |1〉, |2〉 and |4〉 (|5〉) are bound by electromag-
netic �elds with the Rabi frequencies Ω1, Ω2, V and con-
stitute a system with a closed contour of excitation. It
is important to take into account the initial phases ϕi
(i = 1, 2, lf) of these �elds. The CPT state in such a
system can be controlled by changing the relative phase
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Φ = ϕ1 − ϕ2 − ϕlf [7]. The |3〉 −→ |4〉 (|5〉) transition is
the additional excitation channel. A spontaneous decay
of the excited states that takes place in this structure is
shown as γei in Fig. 1.
The population dynamics in the QW can be described

by the density matrix equation

∂ρik
∂t

= − i

}
∑
l

[Hilρlk − ρilHlk] +
∑
l,m

Γik,lmρlm, (1)

where H is the Hamiltonian, Γ is the relaxation matrix,
and ρij is the density matrix. The Hamiltonian H can
be presented as H = H0 +Hint, where H0 is the Hamil-
tonian in the absence of a laser �eld

H0 =

5∑
i=1

εi |i〉 〈i| , (2)

where εi is the energy of the i-th level, and Hint describes
the interaction of the quantum system with the laser �eld.
In the resonance approximation [7]:

Hint = }Ω1 e
− i (ν1t+ϕ1)(|5〉 〈1|+ k |4〉 〈1|)

+}Ω2 e
− i (ν2t+ϕ2)(|5〉 〈2|+ q |4〉 〈2|)

+}Ω3 e
− iν3t(|5〉 〈3|+ p |4〉 〈3|)

+}V e− i (νlf t+ϕlf ) |2〉 〈1|+H.c. (3)

where νi are the carrier frequencies of the electromag-
netic �elds, k = d41/d51, q = d42/d52, p = d43/d53 are
the ratios between the matrix elements of transitions.
The relaxation matrix Γ can be taken from experimental
works, for example [8].
After substitution the explicit form of the Hamilto-

nian (3) into Eq. (1) we change the variables: ρmn =
ρ̃mn e

i (νjt+ϕj), ρnn = ρ̃nn. It allows us to get the set
of equations for the density matrix in the rotating wave
approximation [9].

3. Stationary laser �elds

Let us consider the steady-state case when the laser
intensity is constant. Figure 2 shows the dependence
of the ground state population ρ33 on the two-photon
detuning δ = (∆1 −∆2) /2. When the relative phase Φ
of the �elds in the left QW is zero, the CPT resonance
takes place in the left QW, and the major part of the
population is at ground levels |1〉 and |2〉 (Fig. 2, solid
curve).
The ground state |3〉 in the right QW is bound with the

left QW by the �eld Ω3 and tunnel coupling, therefore
the population ρ33 can be controlled by the phase Φ and
has a resonance dependence on detuning δ (Fig. 2).
In Figs. 2 and 3 all parameters are given in values of

the rate of spontaneous relaxation of the excited states
γ ≈ 1011 s−1.
If we change the relative phase from Φ = 0 to Φ = π/2,

the dark state in the left well is destroyed and the popu-
lation of level |3〉 increases (Fig. 2, dashed curve).
In contrast to the excited states, state |3〉 is long-lived,

therefore the distribution of the populations of the levels

Fig. 2. Dependence of population ρ33 of the ground
state |3〉 on two-photon detuning δ = (∆1 −∆2) /2 for
two values of relative phase Φ of the closed contour of
excitation. Here Ω1 = Ω2 = Ω3 = V = 2γ, ∆ = γ.

in the valence band can be preserved after switching o�
the laser �elds for the time of about γ−1

31 ≈ 10−6 s. This
can be used for creation of the quantum memory protocol
for scalable quantum communications in the solid state.

4. Pulsed laser �eld Ω3

Now we consider the case when the intensities of �elds
Ω1, Ω2 and V are stationary but the �eld Ω3 is pulsed and
is much stronger (about 10 times) than the other �elds
(Fig. 3a). The Ω3 pulse duration is about 10γ

−1 ≈ 0.1 ns.
The spectral width of such a pulse is ≈ 0.1γ, which is less
than the width of the levels in the QW. Therefore, the
�eld Ω3 interacts only with the |3〉 ↔ |4〉 (|5〉) transition.
Let us trace the dynamics of the population of the excited
levels ρ44 + ρ55 because it demonstrates us the response
of the solid state medium and absorption of �eld Ω3.
The population dynamics of the excited levels is shown

in Fig. 3b. The curve is seen to exhibit two peaks. The
stationary �elds Ω1, Ω2 and V form a closed contour of
excitation in the left QW, therefore it is possible to con-
trol the CPT resonance by changing the relative phase Φ.

In the case of Φ = 0 (Fig. 3(b), dot-dashed curve)
the CPT in the left QW takes place before the Ω3 pulse.
As a result, the major part of the population moves to
levels |1〉 and |2〉 and remains trapped there. During the
Ω3 pulse, level |3〉 is almost empty, the structure interacts
with the pulse weakly, and we see two small peaks. These
peaks appear because a small part of the population is
at level |3〉 before the pulse due to the stirring rate γ31.
In the case of Φ = π/4 and Φ = π/2 (Fig. 3b, dashed

and solid curves) the entire population is pumped by the
Ω1 and Ω2 �elds to level |3〉 before the Ω3 pulse. At the
beginning of the pulse the population is fully pumped to
the left QW to levels |1〉 and |2〉. This gives the �rst peak
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Fig. 3. (a) Dependence of Rabi frequencies of the �elds
interacting with the nanostructure on time. (b) De-
pendence of summary population ρ44 + ρ55 of excited
states |4〉 and |5〉 on time. Here Rabi frequencies
are Ω1 = Ω2 = V = γ and the pulse is Ω3 =

10γ exp

(
−
(
t−40γ−1

10γ−1

)2
)
. The two-photon detuning

δ = 0.

in the curves. At the end of the pulse we have the reverse
process, i.e., pumping of the population to the right QW.
We can see this as the second peak in the curves.

5. Conclusions

Double tunnel-coupled quantum wells interacting with
a multicomponent laser radiation have been investigated.
The resonant curve of ground level |3〉 of the right quan-
tum well (see Fig. 1) was obtained for the steady-state
case. It has been shown that it is possible to control the
population in a quantum well (QW) from an adjacent
QW by changing the relative phase Φ of a closed contour
of excitation. If Φ = 0 and the two-photon detuning δ
of �elds Ω1 and Ω2 is zero, the coherent population trap-
ping (CPT) resonance takes place in the left QW and the
major part of the population is trapped there. If Φ 6= 0,
the population is pumped to the right QW. These e�ects
can be useful for the quantum memory where qubit of
information is written to the low-frequency coherence.

Temporal dynamics of the QW population for the
pulsed radiation has been investigated. We considered
the case of stationary �elds interacting with one QW and
a strong pulse of the �eld interacting with the other QW.
Due to tunnel coupling of the QWs the temporal dynam-
ics of the upper levels had a two-peak character. The
amplitudes of these peaks can be controlled by changing
the relative phase Φ of the closed excitation contour. The
peak widths are several times smaller than that of the ini-
tial pulse. Thus, high harmonics of pulsed radiation can
be generated and ultrashort pulses can be obtained in
such a system of QWs.
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