
Vol. 126 (2014) ACTA PHYSICA POLONICA A No. 4A

Proceedings of the XVI National Conference on Superconductivity and Strongly Correlated Systems, Zakopane 2013

Enhancement of the Critical Temperature Induced by the

Quantum Size E�ect in Superconducting Nano�lms

P. Wójcik
*

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science,

al. A. Mickiewicza 30, 30-059 Krakow, Poland

The interplay between the quantum size e�ect and superconductivity in the metallic Al nano�lms has been
studied with the use of the self-consistent numerical solutions of the Bogoliubov�de Gennes equations. We have
shown that the critical temperature of the metallic nano�lm oscillates as a function of the nano�lm thickness. This
phenomenon results from the quasi-particle energy quantization induced by the con�nement of electrons in the
direction perpendicular to the �lm. For the ultrathin nano�lms with thickness 1�2 nm we have found that the
critical temperature increases up to value several times higher as compared to the one measured in the bulk.

DOI: 10.12693/APhysPolA.126.A-130

PACS: 74.78.�w, 73.61.�r, 74.78.Na

1. Introduction

Recent development in nanotechnology allows for the
fabrication of structures with size of several nanome-
ters such as nanowires [1�3] and nano�lms [4�6]. In
these systems, the motion of electrons is con�ned to the
nanometer scale leading to the quantization of their en-
ergy. Therefore, the quantum size e�ect leads to the elec-
tronic properties of the nanosystems which di�er from
those corresponding to the bulk. In recent years, the
interplay between superconductivity and quantum con-
�nement has attracted growing interest due to the unique
phenomena which appear if the electron motion is lim-
ited to the size less than the coherence length. One
of them is the size-dependent enhancement of the en-
ergy gap induced by the quantum size e�ect which has
been theoretically investigated by Shanenko et al. in
Refs. [7, 8]. Recent experimental results for supercon-
ducting nano�lms [4, 5, 9�12] have shown that the crit-
ical temperature and the critical magnetic �eld oscillate
as a function of the nano�lm thickness. Motivated by
these experiments, we have studied the critical tempera-
ture as a function of the nano�lm thickness. It has been
found that for selected nano�lm thicknesses the critical
temperature reaches the value that is several times higher
as compared to the one measured in the bulk. The en-
hancement of the critical temperature has been explained
on the basis of the quasi-particle energy quantization in-
duced by the electron con�nement.

2. Bogoliubov�de Gennes equations

The Bogoliubov�de Gennes (BdG) equations have the
form
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where Ui(r) and Vi(r) are the electron-like and hole-like
wave functions, Ei is the quasi-particle energy, m is the
free electron mass, µ is the chemical potential, and ∆(r)
is the position-dependent order parameter, which in the
absence of the magnetic �eld, is a real quantity.

The quasi-particle wave functions for the nano�lm can
be expressed as(
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where i = {kx, ky, ν} − kx, ky are the free electron wave
vector components in the x and y direction (the periodic
boundary conditions have been assumed) and ν labels
the subsequent quantum states in the z direction.

The BdG equations with the quasi-particle wave func-
tion (2) reduce to the form(
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where k2‖ = k2x + k2y.

The order parameter ∆(z) can be expressed in the fol-
lowing manner:
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where g is the electron�phonon coupling and f(E) is the
Fermi�Dirac distribution. The summation in Eq. (5) is
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carried out only over these states for which the single-
electron energy ξkxkyν satis�es the condition

∣∣ξkxkyν∣∣ <
~ωD, where ωD is the Debye frequency and ξkxkyν is
given by
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The system of Eqs. (3),(4) and Eq. (5) are solved in a
self-consistent manner until the convergence is reached.
Since the chemical potential for the nanostructures devi-
ates from the bulk value, for each nano�lm thickness we
determine the chemical potential using the formula
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where d is the thickness of the �lm in the z direc-
tion. The calculations have been carried out for the
Al nano�lm with the following values of the parame-
ters: gNbulk(0) = 0.18 where Nbulk(0) = mkF/(2π

2~2)
is the bulk density of the single-electron states at the
Fermi level, ~ωD = 32.31 meV and the bulk energy gap
∆bulk = 0.25 meV.

3. Results and discussion

In Fig. 1 we present the critical temperature TC as a
function of the nano�lm thickness d. The dependence
TC(d) shows that the critical temperature oscillates as a
function of the nano�lm thickness and for some particular
values of d abruptly increases reaching the value about
six times higher as compared to the critical temperature
measured in the bulk T bulk

C = 1.64meV. The critical tem-
perature for each nano�lm thickness has been determined
based on the calculations of the superconducting energy
gap ∆ as a function of the temperature T .
Figure 2 displays the dependence ∆(T ) for four chosen

nano�lm thicknesses: d = 1.08 nm which corresponds
to the �rst maximum of TC, d = 1.7 nm which corre-
sponds to the drop of the critical temperature below its
bulk value, d = 1.76 nm and d = 2.44 nm which cor-
respond to the second and third maximum of TC. The
chosen nano�lm thicknesses are marked in Fig. 1a by ar-
rows. The enhancement of the critical temperature for
some nano�lm thicknesses can be understood on the ba-
sis of the analysis of the interplay between the supercon-
ductivity and the quantum size e�ect. In the ultrathin
nano�lm, the con�nement of electrons in the direction
perpendicular to the surface leads to the quantization of
their energy. It means that the Fermi sphere splits into
a series of parabolic subbands. Futhermore, it is well
known that the Cooper-pair condensation is determined
by the electron�phonon interaction and concerns only
electrons from the energy window [µ− ~ωD, µ+ ~ωD]

Fig. 1. (a) Critical temperature TC and (b) electron
density of states N in the energy window ED =
[µ− ~ωD, µ+ ~ωD] as a function of the nano�lm thick-
ness d. In part (a) the critical temperature for the bulks
is marked by the dashed red line.

Fig. 2. The superconducting energy gap ∆ as a func-
tion of temperature T for nano�lm thicknesses marked
by arrows in Fig. 1a.

around the Fermi level, where ωD is the Debye frequency.
Therefore the superconducting gap strongly depends on
the number of states in the mentioned energy range. In
the ultrathin nano�lm, the increase of the thickness d
leads to decrease of the energy of each parabolic sub-
bands. If the subsequent subbands pass through the
energy window [µ− ~ωD, µ+ ~ωD], we can observe the
step-like enhancement of the density of states participat-
ing in the condensation of the Cooper-pairs (see Fig. 1b).
The described mechanism causes the increase of the zero-
-temperature energy gap and consequently the enhance-
ment of the critical temperature for particular nano�lm
thicknesses. The enhancement of the zero-temperature
energy gap is clearly visible in Fig. 2.

In order to determine the number of subbands which
participate in the Cooper-pair condensation, in Fig. 3 we
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Fig. 3. Quasi-particle kinetic energy ξ as a function of
the wave vector for nano�lm thicknesses d marked by
arrows in Fig. 1a.

present the quasi-particle kinetic energy ξ as a function
of the wave vector k|| for considered nano�lm thicknesses
(see Fig. 1a). The energy window [µ− ~ωD, µ+ ~ωD]
around the Fermi level has been marked by the dashed
horizontal lines. We can see that for the nano�lm thick-
ness d = 1.08 nm (Fig. 3a) the enhancement of the crit-
ical temperature corresponds to the Cooper pairing of
electrons from the quantum subband ν = 2 which ki-
netic energy minimum is located in the energy window
[µ− ~ωD, µ+ ~ωD]. By analogy, Fig. 3c and d allows us
to conclude that the second and third maximum corre-
spond to the condensation of electrons from the subband
ν = 3 and ν = 4, respectively. In contrary, in Fig. 3b
we can observe that the drop of critical temperature be-
low its bulk value results from the fact that the mini-
mum of the subband ν = 2 leaves the energy window
[µ− ~ωD, µ+ ~ωD].

4. Conclusions

The critical temperature as a function of the nano�lm
thickness has been studied on the basis of the self-
consistent numerical solution of BdG equations. Calcula-
tions for Al nano�lms have shown that for some nano�lms
thicknesses the critical temperature increases up to the
value six times higher as compared to the critical temper-
ature in the bulk. The enhancement of the critical tem-
perature has been explained based on the quantization of
the electron energy in the direction perpendicular to the
plane. Our results are in agreement with the oscillations
of the critical temperature experimentally observed for
the superconducting nano�lms.
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