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Anderson�Kondo Lattice Hamiltonian

from the Anderson-Lattice Model:
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We derive the Anderson�Kondo lattice model by applying canonical perturbation expansion for the Anderson-
lattice model in direct space. The transformation is carried out up to the fourth order by a modi�ed Schrie�er�Wol�
transformation: we separate the part of hybridization term responsible for the high-energy processes (involving
the largest in-the-system intraatomic Coulomb interaction between f electrons) and replace it with the virtual
processes in higher orders. The higher-order processes lead to three separate exchange interactions. The obtained
Hamiltonian contains both the Kondo (f�c) and the superexchange (f�f ) interactions, as well as a residual hy-
bridization responsible for the heavy-quasiparticle formation. This e�ective Hamiltonian can be used to analyze
the magnetic or the paired states, as well their coexistence in heavy-fermion systems. The magnitudes of both the
Kondo exchange and the superexchange integrals are estimated as a function of bare hybridization magnitude.
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1. Introduction

In this paper we present our main results concerning
the canonical perturbation expansion for the Anderson-
lattice model in direct space, by transforming out only a
part of the f�c hybridization term and replacing it with
the virtual processes in higher orders, which in turn yield
the e�ective f�c, f�f, and c�c interactions. The calcula-
tions are carried out up to the fourth order, taking into
account both two- and three-site processes. These results
elaborate and correct the earlier results [1]. We also es-
timate the magnitude of the derived exchange integrals.
The present results provide an e�ective model for subse-
quent consideration of magnetism and real-space pairing
in heavy-fermion systems [2, 3]. The results represent an
application of the modi�ed Schrie�er�Wol� transforma-
tion, that leads, among others, to the itineracy of origi-
nally localized f electrons.

2. Model

The basic feature of Anderson-lattice model is the
hybridization term Vim representing the quantum-
mechanical mixing between the two types of electrons:
the atomic (f ) and the conduction (c) states. We as-
sume that |Vim| � U , where U is the magnitude of
the f�f Coulomb interaction in the same atomic f -state.
Other Coulomb interactions (in the conduction band and
between bands) are disregarded. Additionally, we put
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εf ∼ Vim, which means that the atomic level is located
below, but not too far from the Fermi surface. Therefore,
one can calculate nontrivial corrections in small param-
eter Vim/U to the electronic f and c states if the strong
Coulomb interaction ∼ U and the hybridization ∼ Vim
are included.

The starting Anderson-lattice Hamiltonian in the site
(real-space) language reads

H =
∑
mnσ
m6=n

(tmn − µδmn) ĉ†mσ ĉnσ + εf
∑
iσ

N̂iσ

+U
∑
i

N̂i↑N̂i↓+
∑
imσ

(
Vimf̂

†
iσ ĉmσ+V

∗
imĉ
†
mσ f̂iσ

)
, (1)

where ĉ†mσ, ĉmσ are creation and annihilation operators
of electrons in c-state in real-space representation (m is

the site number and σ the spin), f̂†iσ, f̂iσ are creation and
annihilation operators of f -electrons on i-th site with spin

σ, N̂iσ ≡ f̂†iσ f̂iσ is the number of f -electrons on site i, tmn
is hopping integral for c-electrons, εf is the bare energy of
the originally localized 4f electrons, Vim is hybridization
matrix element and U is intraatomic Coulomb interaction
(the high-energy scale in the system).

The starting point in the derivation of the e�ec-
tive Hamiltonian via a canonical perturbation expansion
(introduced for Anderson-lattice model in [1]) is a divi-
sion of the hybridization term into two parts. Namely,
we divide the term into two, re�ecting the low- and the
high-energy processes, i.e., those which do not and do
involve energy U , respectively, as depicted schematically
in Fig. 1. In formal language, it amounts to separating
the hybridization term in the following manner:
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f̂†iσ ĉmσ ≡
(
1− N̂iσ̄

)
f̂†iσ ĉmσ + N̂iσ̄ f̂

†
iσ ĉmσ. (2)

Next, by treating as a perturbation only the part con-

nected with high-energy processes, i.e., ∼ (N̂iσ̄ f̂
†
iσ ĉmσ +

H.c.), we calculate explicitly the e�ective Hamiltonian
using the canonical perturbation expansion up to the
fourth order. The low-energy part remains unchanged
and represents a residual hybridization, which will intro-
duce, among others, the itineracy of the starting (bare)
localized f states. In general, the canonical perturbation
expansion method allows for di�erentiation between the
two terms in (1), which are of the same order (∼ Vim).
The di�erentiation constitutes the main di�erence be-
tween the present transformation and that introduced
originally by Schrie�er and Wol� [4]. It will lead to far
reaching consequences, e.g., the itineracy of originally
atomic (f ) electrons.

Fig. 1. Low- and high-energy interband hopping pro-
cesses in direct space induced by the hybridization be-
tween f and c states. Only the high-energy f�c mixing
processes (involving energy U) are transformed out and
replaced by exchange processes in the second and the
fourth orders. Low-energy processes remain unchanged
in e�ective Hamiltonian as residual hybridization. In
e�ect, such transformation di�ers from the standard
Schrie�er�Wol� transformation, where both terms are
transformed out.

It should be noted that in the present approach the
number of f electrons

∑
iNi is not conserved, neither

before nor after the transformation. Instead, only the

total number of electrons in the system, n
(e)
i = Ni + ni

is �xed, where ni ≡
∑
σ c
†
iσciσ. This last circumstance

allows for an itineracy of strongly correlated f electrons;
it allows to represent one of the principal di�erences with
the Schrie�er�Wol� approach.

3. Canonical perturbation expansion:
a brief summary

To develop the canonical perturbation expansion
(CPE) we proceed as follows [1]. Due to the fact that
important are the double occupancies of f electrons on
the same site, we project them out from Hamiltonian
with the help of operators Pl:

∑
l

Pl = 1 and PlPl′ = δll′Pl. (3)

Operators Pl project the states onto subspace with (l−1)
double occupancies in the system of f sites. We rede�ne
initial Anderson-lattice model using projection operators
Pl in the following manner:

H0 ≡ P1HP1 + P2HP2, (4)

H1 ≡ P1HP2 + P2HP1. (5)

In this representation, H1 describes the processes chang-
ing by one number of double occupancies

P2HP1 = (P1HP2)
† ≡

∑
imσ

VimN̂iσ̄ f̂
†
iσ ĉmσ. (6)

In reality, only the e�ective Hamiltonian projected onto
P1 subspace will matter; the role of the higher-energy
subspaces will show up through virtual processes only.

Now, we introduce the canonical transformation of (1)
using the transformation generator S of the form

H̃(ε) = e− iεS(H0 + εH1)e
+iεS , (7)

where ε is a parameter, which groups the terms of the
same order of expansion in Vim (at the end we put ε = 1).
Expanding the exponential functions into a Taylor series
and eliminating the linear term ∼ ε by setting the phys-
ical condition

H1 = i[S,H0], (8)

we obtain up to the fourth order

H̃(ε) = H0 −
i

2
ε2[S,H1]−

1

3
ε3[S, [S,H1]]

+
i

8
ε4[S, [S, [S,H1]]] +O(ε5). (9)

With the use of the de�nition of projection opera-
tors we can �nd form of PlSPl+1 from condition (8), by
putting PlS(0)Pl+1 = 0 and iterating the solution [1]. Fi-
nally, we obtain

PlS(n→∞)Pl+1 =

− i (PlH1Pl+1) (Pl+1H0Pl+1 − PlH0Pl)
−1
. (10)

Let us note that PlSPl ∼ Pl, thus we can always choose
S in such a way that PlSPl = 0, because if we project
(8) with operator Pl on both sides we obtain that PlSPl
commutes with H0.

In the atomic limit, the di�erence Pl+1H0Pl+1 −
PlH0Pl can be replaced by mean value of energy dif-
ference between subspaces with l and (l − 1) double oc-
cupancies. By making this approximation, we neglect
renormalization of the low-energy hybridization processes
by the higher order contributions (i.e., neglect the terms
∼ Vim in the denominator of (10)). In e�ect, we have

Pl+1H0Pl+1−PlH0Pl≈〈Pl+1H0Pl+1〉−〈PlH0Pl〉 =

U + εf − µ ≡ U + εf . (11)

Finally, by projecting out the expansion introduced by
expression (9) on the subspace without double occupan-
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cies, the e�ective Hamiltonian can be obtained in the
form

P1H̃P1 ≈ P1H0P1 −
1

U + εf
P1H1P2H1P1

+
1

(U + εf )
3

(
P1H1P2H1P1H1P2H1P1

−1

2
P1H1P2H1P3H1P2H1P1

)
, (12)

where we have put ε = 1. Let us note that the third-
-order term is always zero, because we have chosen that
PlSPl = 0.
The term P1H1P2H1P1 describes virtual process in the

second order in which in intermediate state a single dou-
ble occupancy occurs. In the fourth order two di�erent
types of processes appear: those with passing through
the subspace (P1) without double occupancies and those
with passing through that subspace with up to two dou-
ble occupancies (P3).
In what follows we restrict ourselves to the most in-

teresting part, that is to the Hamiltonian projected onto
the subspace without double occupancies (12). This part
will be discussed in detail, because it is helpful in de-
termining the ground state for di�erent magnetic and
superconducting phases of heavy fermions with nominal
4f1 starting con�guration (Ce3+ ions).

4. Results: Kondo (f�c) and superexchange
(f�f ) integrals

An explicit form of the e�ective Hamiltonian can be
found, if we carry out a careful analysis of all possi-
ble processes, which can show up in the second and
the fourth orders of the expansion. After collecting the
all possible diagrams containing two- and three-site pro-
cesses (examples are shown in Fig. 2), we evaluate them

Fig. 2. Examples of processes in the second (left) and
the fourth (right) orders of the CPE expansion.

using de�nitions (4)�(6). In e�ect, the complete e�ective
Hamiltonian (12) with projected out double occupancies

(Ĥeff ' P1H̃P1) has the following form:

Ĥeff '
∑

m6=n,σ

(tmn − µδmn) ĉ†mσ ĉnσ + εf
∑
i,σ

ν̂iσ

+
∑
i,m,σ

(
Vim

(
1− N̂iσ̄

)
f̂†iσ ĉmσ +H.c.

)
+
∑
i,m

J
(K)
im

(
Ŝi · ŝm −

n̂mν̂i
4

)

+
∑
i 6=j,σ

J
(H)
ij

(
Ŝi · Ŝj −

ν̂iν̂j
4

)
+2i

∑
〈mi〉〈mj〉

J
(H)
ij

(
1 +

nf
nc

)
ŝm ·

(
Ŝj × Ŝi

)
, (13)

where the projected particle-number operators are νiσ ≡(
1− N̂iσ̄

)
N̂iσ, and νi ≡

∑
σ νiσ; Ŝi and ŝm are the lo-

cal spin operators in the fermion representation for f and
c electrons, respectively; nc ≡ 〈nm〉 and nf ≡ 〈νi〉 are
average occupancies. The �rst three terms represent the
projected starting Hamiltonian with residual (projected)
hybridization only. The next three represent, respec-
tively: the Kondo interaction, the superexchange part
and the interaction of Dzialoshinskii�Moriya-type, the
last appearing only if the c-electrons are present. The
noncollinearity of the magnetic ordering of c electrons
(∼ Ŝi · (ŝn × ŝm)), as well as the superexchange interac-
tion between them, were neglected in e�ective Hamilto-
nian (13) since the c bandwidth Wc = 2z|t〈mn〉| is by far
the largest energy in the c-electron subsystem.
The corresponding exchange integrals have the follow-

ing forms:

J
(K)
im ≡ 2

|Vim|2

U + εf
− 4

|Vim|4

(U + εf )
3

−4
∑
n(i)

|Vim|2|Vin|2

(U + εf )
3

(
1− nc

2

)
−2
∑
n(i)

|Vim|2|Vin|2

(U + εf )
3 nc−2

∑
j(m)

|Vim|2|Vjm|2

(U + εf )
3 nf , (14)

J
(H)
ij ≡

∑
m(i)

|Vjm|2|Vim|2

(U + εf )
3 nc. (15)

The �rst of them represents the e�ective Kondo ex-
change integral calculated here to the fourth order; the
second, the exchange integral for both the Heisenberg
part and the novel three-spin interactions. Note that in
order to estimate the corresponding exchange integrals,
the average occupancies nc and nf have been taken for
the actual occupancies. Obviously, ne = nc + nf . Now,
we can estimate numerically the values of (14) and (15),
as discussed next.

5. Estimates of exchange integrals

The numerical estimates of the exchange integrals ap-
pearing in (14) and (15) are shown in Figs. 3 and 4 for the
two values of Coulomb interaction U : εf +U = 3 eV and
εf + U = 5 eV, respectively. We have also assumed that
hybridization has nonzero value only for nearest neigh-
bours V〈im〉 = V , where the number of nearest neighbors
z = 4 and the hybridization magnitude |V | = 0.3÷0.5 eV.
Typically for Ce systems the number of electrons per site

is nc = 1 and nf = 1. Let us note that to estimate J
(H)
ij

we assume that sites i and j are next nearest neighbors,
such that summation in (15) allows only those m, which
are nearest neighbors with both i and j.
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Fig. 3. Exemplary values of the Kondo exchange inte-
gral J(K) with and without correction from the fourth
order (a) and that for the superexchange integral J(H)

(b); both as a function of bare hybridization magnitude
|V |, for εf + U = 3 eV.

Fig. 4. Values of the Kondo exchange J(K) with and
without correction coming from the fourth order (a) and

of superexchange J(H) integral (b); both integrals as a
function of bare hybridization magnitude |V |, and for
εf + U = 5 eV.

Let us note that J (K) in Fig. 3a is always antiferromag-
netic; the fourth order e�ects reduce the second-order
value by ≈ 30% for the smaller U -value. Likewise, the
f�f exchange J (H) is also always antiferromagnetic and
more than an order of magnitude smaller, as it should be,
since it contains solely the fourth-order processes. For the
larger value of U the integral J (H) and the correction from
the fourth order in J (K) are smaller. Let us note also that
the present approach contains short range interaction be-
tween asymptotically itinerant fermions (Vim 6= 0).

6. Concluding remarks

The value of the Kondo exchange and the superex-
change integrals have been evaluated as a function of
hybridization magnitude. In the metallic state there ap-
pears a 3-spin interaction (the last term in (13)), which
may introduce a noncollinearity of the spins in the mag-
netic heavy-fermion state. A detailed analysis of the re-
sults will be published separately.
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