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The properties of resonant two-electron pairs are examined in three-dimensional simple cubic extended Hub-

bard tUW model, in s- and d- symmetry channels, in the limit of empty lattice. Lattice Green function technique
is applied to calculate the scattering amplitude by means of T matrix for any energy in the band on ΓR line within
the Brillouin zone. The analysis shows the persistence of resonant states even for Coulomb interactions so weak
that the equation for the resonant states is not formally ful�lled. The di�erence in behavior of resonances controlled
by on-site and intersite Coulomb interactions is found. The ranges of applicability of approximate formula for the
actual position of resonant peak and its width are shown.
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1. Introduction

The pairing gap in superconducting cuprates, which
is the most intensively researched family of high-
-temperature superconductors (HTS), is of the d-wave
symmetry [1]. It is believed that the superconductiv-
ity in those materials is of quasi-two-dimensional nature.
There are also other groups of materials, with di�er-
ent properties, usually with lower critical temperature,
which are nevertheless believed to have similar, uncon-
ventional mechanism of superconductivity (probably con-
nected with strong electron correlations) [2]. The ex-
amples are three-dimensional (3D) Chevrel phases [3] or
doped BaBiO3, ruthenates with triplet p-wave pairing [4],
3D heavy fermion materials [5], borocarbides with ex-
tended s or s+ g three-dimensional symmetry [6], topo-
logical insulators, insulating in the bulk and px + ipy-
wave on the surface [7], pnictides with possible s±-wave
pairing [8] and dimensional crossover 3D�2D [9]. A very
interesting is also the normal phase of HTS, which of-
ten exhibits pseudogap [10]. A basic ingredient of all
these phenomena is a two-electron or two-hole pair, with
either large (Cooper pair) or small (local pair) radius.
Transition between those two regimes is known as BCS�
BEC transition, a very interesting and di�cult prob-
lem [11�15]. The properties of a single pair seem per-
fectly suited to probe this subject, though we must re-
member that the properties of a pair usually do not
have a simple and direct translation into the properties
of superconducting state [16]. Nevertheless, the prob-
lem of two particles on a lattice is a very interesting
one and it is also one of few examples in solid state
physics, which enjoy an exact solution (in the empty lat-
tice limit). The pair's properties are especially important
in the context of negative-U Hubbard model or boson-
-fermion model of superconductivity [17], where bound
and resonant states appear naturally.

While the behavior of bound pairs in 2D is
known [15, 18�32], the problem in 3D was given less at-

*e-mail: mbak@amu.edu.pl

tention. Three-dimensional bound pairs of magnons were
subject of intensive research in sixties [33, 34] but then
the development was hampered by mathematical di�-
culties in calculating 3D lattice Green function (LGF),
especially concerning the resonant states, expressed by
singular integrals. In seventies Joyce [35] found an ana-
lytical expression for 3D LGF's but by then the interest in
the subject diminished. In view of the fundamental role
played in the �eld of superconductivity by two-particle
states and unclear importance of the third dimension, as
described in preceding paragraph, the author considers it
worthwhile to examine the properties of bound and par-
ticularly resonant states in 3D, with the special emphasis
on the behavior within the symmetry channels. One fur-
ther argument in favor of such analysis is the probability
of practical realization of these states in optical lattices
in the close future. The 1D bosonic states' properties
have already been thoroughly analyzed [36, 37], the 3D
states only await small technological progress.

To perform the current analysis the lattice Green func-
tion approach will be used [38, 39], which will turn equiv-
alent to the well known impurity problem on a lattice in
a subspace of �xed total momentum of a pair [40]; the
symmetry transformations for the states within the dis-
tance of the Coulomb interaction of the model will be
applied [40, 41]. We shall consider the extended Hub-
bard model, which naturally admits other than s-wave
pairings, in particular the most widespread d-wave type.

The plan of work is as follows: after Introduction the
formalism will be sketched in Sect. 2, where the reduction
to the problem of one impurity on a lattice will be shown.
The properties of resonant states in various symmetry
channels will be described in Sect. 3 and the paper will
be closed by Conclusions.

2. Formalism

2.1. The Hamiltonian and its eigenstates

The Hamiltonian is given by H = H0 +HI, with

H0 =
∑
〈i,j〉

ti,jc
†
i cj , (1)
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HI = U
∑
i

ni,↑ni,↓ +
W

2

∑
〈i,j〉

∑
σ,σ′

ni,σnj,σ′ , (2)

where tij is the hopping integral and c†i,σ creates a Wan-
nier state at a site i.

The two-particle eigenstates of H0 have �xed momenta
k1 and k2 of particles, which can also be described by
center of massK = k1+k2 and relative k = (k2−k1)/2
momenta

H0|K,k, σ1, σ2〉 = EK,k|K,k, σ1, σ2〉, (3)

|K,k, σ1, σ2〉 = |k1σ1,k2σ2〉 = c†k1,σ1c
†
k2,σ2|0〉, (4)

EK,k = εK+k/2 + εK−k/2 = εk1 + εk2, (5)

where c†k,σ creates Bloch state with quasimomentum k

and spin σ, −t = ti,j and εk =
∑
δ t(δ) exp(ikδ), where

δ connects nearest neighbors (nn). The eigenenergy in
the speci�c case of simple cubic lattice

EscK,k = −4t
(
cos

Kx

2
coskxax + cos

Ky

2
coskyay

+α cos
Kz

2
coskzaz

)
, (6)

where ax, ay, az are lattice constants and α is possible
z-axis anisotropy parameter.

On the other hand, HI is diagonal within the local

orbitals basis |iσ1, jσ2〉 = c†iσ1
c†jσ2
|0〉, where c†iσ cre-

ates a Wannier state centered around site i of a lat-
tice. As we assume periodic boundary conditions, the
system is translationally invariant and this means that
the center-of-mass' (quasi)momentum K is conserved
quantity. Thus it is useful to transform local basis vec-
tors into the relative: r = i − j and center-of-mass:
Rcm = (i + j)/2 (which couples to K) coordinates �
we create �mixed� basis

|K, r, σ1, σ2〉 =
1√
N

∑
r′

exp (iK · (r′ + r/2)) c†r′,σ1c
†
r′+r,σ2|0〉, (7)

where N is number of lattice sites. Mixed basis is or-
thogonal

〈K, r, σ1, σ2|K ′, r′, σ′1, σ′2〉 =

δK,K′(δr,r′δσ1,σ1′δσ2,σ2′ − δr,−r′δσ1,σ2′δσ2,σ1′), (8)
and its overlap with the momentum basis consists of
plane waves

〈K, r, σ1, σ2|K ′,k, σ′1, σ′2〉 =

δK,K′
√
N

(
e ikrδσ1,σ1′δσ2,σ2′ −e− ikrδσ1,σ2′δσ2,σ1′

)
. (9)

HI is diagonal in mixed basis

〈K, r, ↑, ↓ |HI|K ′, r′, ↑, ↓〉 =

δK,K′δr′,r (Uδr,0 +Wδr,δ) (10)

(while only W part for both same spins) while

H0|K, r, σ1, σ2〉 =

∑
δ

2t(δ) cos(K · δ/2)|K, r + δ, σ1, σ2〉. (11)

As we see, the Hamiltonian leaves the center of mass mo-
mentum K unchanged. For �xed K Eq. (11) describes
the hopping of one particle on the lattice spanned by the
relative position vectors r. The latter is the same as the
crystal lattice, with the di�erence that on the �relative�
lattice one site � the central one � is distinguished.
Thus the problem is equivalent to single impurity prob-
lem on a lattice and we may further apply the existing
theory of that phenomenon [38, 40, 41].

2.2. Resonant states

The solution of Schrödinger equation

(H0 +HI)|ψ〉 = E|ψ〉, (12)

can be formally expressed as

|ψ〉 = G0HI|ψ〉, (13)

G0 = (E −H0)
−1 =

∑
k

|k〉〈k|
E − Ek

, (14)

where G0 is Green function and H0|k〉 = Ek|k〉. Within
the subspace of �xed K, |k〉's are given by (4) and Ek
by (6). Ek's for all possible values of k create an en-
ergetic band; solution of Eq. (13) may exist for speci�c
energies E (dependent on parameters of HI) outside the
band � the energies of bound states, corresponding to
well de�ned G0. This E is calculated from the condition
on non-trivial solutions of homogeneous Eq. (13):

det (I −G0HI) = 0. (15)

E may also lay within the band � we speak then about
resonant state with singular G0. The singularity is dealt
with in a standard way, by adding small in�nitesimal
imaginary part to the energy, changing G0 into G+

0 .

2.2.1. Lippmann�Schwinger equation
Usually the equation for resonant states includes also

the wave function of incident particle and is called the
Lippmann�Schwinger equation then

|ψ〉 = |q〉+G+
0 (E,K)HI|ψ〉, (16)

where |q〉 describes incident particle with the wave vector
q. Formal solution of (16) reads

|ψ〉 = (I −G+
0 HI)

−1|q〉, (17)

which can be substituted back onto the right hand side
(r.h.s.) of (16) to obtain

|ψ〉 = |q〉+G+
0 (E,K)HI(I −G+

0 HI)
−1|q〉 =

|q〉+G+
0 (E,K)T +|q〉, (18)

where we used the fact that (I − G+
0 HI)

−1 =
H−1I (H−1I −G

+
0 )
−1 and introduced the T -matrix: T + =(

V −1 −G+
0 (E,K)

)−1
. The wave function, Eq. (13)

can be expanded in any complete orthonormal set of
states |r〉:
〈r|ψ〉=〈r|q〉+

∑
r′

∑
r′′

〈r|G+
0 |r′〉〈r′|T +|r′′〉〈r′′|q〉. (19)

2.2.2. Koster�Slater improvement
The most important notion of the theory is that if

|r〉's describe localized states, and we arrange the basis,
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so that the small r's, close to the lattice origin (denoted
by capital R henceforth), are gathered in the beginning
of the basis set, then HI in that basis acquires block di-
agonal form [38]:

HI =

(
V 0

0 0

)
, (20)

where V is diagonal matrix with elements 〈r|HI|r〉 given
by (10). The size of V is equal to the number of sites
connected by the Coulomb interactions to the site �0�.
It determines the size of the system of equations to be
solved, so changing to the local basis is a great progress
compared to the momentum basis (4), where one needs
as many basis vectors (and equations) as there are lattice
sites.

A good choice of basis |r〉 is �mixed� states basis (7).
If we de�ne a vector consisting of the wave functions
on the �close� sites, i.e., the largest vector which can be
changed by V , then the whole vector of wave functions
can be calculated from the matrix equation looking ex-
actly like Eq. (18), where by |ψ〉 we mean the vector of
wave functions 〈R|ψ〉, by |q〉 a vector consisting of plane
waves on close sites 〈R|q〉, by G+

0 a matrix in position
representation and T + is a matrix with elements de�ned
by:

〈R|(T +)−1|R′〉 = 〈R|V −1|R′〉 − 〈R|G+
0 |R

′〉. (21)

When |ψ〉, i.e., 〈R|ψ〉 for all �close� R's are known,
Eq. (19), with

∑
r,r′ changed into

∑
R,R′ , can be used

to calculate the wave functions on �far� sites 〈r|ψ〉.
2.2.3. Symmetry basis

We can further simplify matters by applying unitary
transformation to the wave functions on �close� sites and
create their linear combinations transforming according
to irreducible representations (irreps) of the point sym-
metry group of a lattice [41]. Such combinations consist
of R's, which are transformed into one another by the
operations of the point group, i.e., of R's of the same
length |R| within group theoretic star of R. Thus the
symmetric combinations are made within the �layers� of
the same |R| = R, so the new, symmetric basis is denoted
as |xR〉, where x signi�es an irrep and the length R �
the layer. In case of longer ranged Coulomb interactions
more indices can be added

〈r|ψ〉 = 〈r|q〉

+
∑
x

∑
R,R′

〈r|G+
0 (E,K)|xR〉〈xR|T +|xR〉〈xR′ |q〉, (22)

〈xR|T +|xR′〉 =
∑
R,R′

Ux,RT +
R,R′U

†
R′,x =∑

R,R′

〈xR|R〉((T +)−1R,R′)
−1〈R′|xR′〉, (23)

where U denotes unitary transformation matrix con-
sisting of elements 〈xR|R〉 and 〈xR|q〉 which are lin-
ear combinations of plane waves on �close� sites trans-
forming according to irreducible representations of lat-
tice point group, created by the same transformation

〈xR|q〉 = (U |q〉)x =
∑
R∈R〈xR|R〉〈R|q〉.

In the symmetric basis the T +-matrix becomes block
diagonal. For a general K the singlets get separated
from the triplets, while for K on some symmetry line
further blocking is possible. The maximal separation into
symmetry channels is for K = 0 (and on simple cubic
lattice for K on ΓR line � on the main diagonal).
For the simple cubic lattice with lattice constants

ax = Rx, ay = Ry, az = Rz, we have the following non-
zero U -matrix elements: 〈xR|R〉 [41, 43]: 〈s0|R0〉 = 1,

〈s1|R±ξ〉 = 1/
√
6 for ξ = x, y, z, 〈pξ|Rξ〉 = −〈pξ|R−ξ〉 =

1/
√
2 for ξ = x, y, z, 〈dα|R±z〉 = −〈dα|R±y〉 = 1/2,

〈dβ |R±x〉 = 1/
√
3 and 〈dβ |Rξ〉 = −1/2

√
3 for ξ =

±y,±z.
〈q|U† = (〈q|R0〉, 〈q|Rx〉, 〈q|R−x〉,

〈q|Ry〉, 〈q|R−y〉, 〈q|Rz〉, 〈q|R−z〉)U† =

(〈q|s0〉,〈q|s1〉,〈q|px〉,〈q|py〉, 〈q|pz〉,〈q|dα〉,〈q|dβ〉)=(
1,
√

2/3(cos qx + cos qy + cos qz), i
√
2 sin qx,

i
√
2 sin qy, i

√
2 sin qz, cos qy − cos qz,

(2 cos qx − cos qy − cos qz) /
√
3
)
, (24)

where dα = dy2−z2 , dβ = d2x2−y2−z2 and in the last
equation we assumed ax = ay = az = 1.

2.2.4. Scattering amplitude

It can be proved that for large r, 〈r|G+
0 |xR〉 becomes

proportional to the spherical wave [40]:

(G+
0 )x,r→∞ −→ const

exp(iq0r)

|r|
, (25)

where q0 is certain special wave vector. Thus the mul-
tiplier of G+

0 in Eq. (22) is by de�nition proportional to
the scattering amplitude f , so

f ∼ T +(E). (26)

The total cross-section is de�ned in the usual way as
σD = |f |2. The constant in Eq. (25) is nonsingular, so
the T matrix is mostly responsible for the maxima of f .
In the following I will calculate normalized T +, so the
contribution of the constant will be unimportant and we
can consider f as proportional to T +. In particular pos-
sible peaks of T + matrix will correspond to the peaks of
σD, i.e., to the resonant states.
Let us note that Eq. (22) expresses the scattering am-

plitude as a sum of contributions from the irreps of the
symmetry group of a potential and is therefore an analog
of the usual partial-wave formula. Equation (22) �nds
solutions for any E within the band and so the di�erent
symmetry channels do not decouple, as is the case with
the bound states. Nevertheless, as, in general, the reso-
nance peaks will appear for di�erent energies in di�erent
symmetry channels we may identify them with symmetry
label and examine them separately.
There is a �continuity� between bound and resonant

states in the sense that the resonant are �created� from
the bound states, which have crossed the band boundary.
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There is also a continuity in their mathematical descrip-
tion. The bound states' energies are calculated from the
equation det(V −1 − G0(E,K)) = 0. When E crosses
the band boundary and gets inside the energetic band,
G0 and E become complex. The real part of E is con-
nected with the position of T +-matrix peak Er, while its
imaginary part � with the peak's width Γ . We obtain
them by expanding the following equation (within sym-
metry blocks) [40], which de�nes E0:

det
(
V −1 − Re

(
G+

0 (E0,K)
))

=

detRe((T +)−1) = 0, (27)

where the determinant factorizes forK on ΓR symmetry
line in Brillouin zone (B.z.) into

det(T (E,K)−1) =

D(s0,s1)D(px)D(py)D(pz)D(dα)D(dβ). (28)

The subdeterminants D(n) for n = px, py, px, dα, dβ have
the form

D(n) =
1

W
− 〈n|G+

0 |n〉, (29)

E(n)
r = E0 −

D
(n)
i D

(n)′

i

|D(n)′ |2
, (30)

Γ (n) =
2D

(n)
i D

(n)′

r

|D(n)′ |2
, (31)

where prime means the energy derivative and D
(n)
i and

D
(n)
r are the imaginary and the real parts respectively

of the block of determinant (27) within n-th symme-
try channel [40] and D(s0,s1) = 1

UW −
1
U 〈s1|G

+
0 |s1〉 −

1
W 〈s0|G

+
0 |s0〉+ 〈s0|G

+
0 |s0〉〈s1|G

+
0 |s1〉 − 〈s0|G

+
0 |s1〉2, .

By solving the determinant (27) for various K we can
obtain the resonant-states' dispersion relations. The fol-
lowing calculations will concern only the ΓR line in sc
lattice. On that line the two d-wave pairings and the
three p-wave are degenerate.

2.3. Green functions

To calculate T -matrix in symmetry channels, Eq. (23),
one needs 〈xR|G0|xR′〉 =

∑
k〈xR|k〉〈k|xR′〉/(E − EK,k)

and to calculate 〈r|ψ〉, Eq. (22), also 〈r|G+
0 |xR′〉. If

gp,q,s =
1

κ

1

π3

∫ π

0

cos pφ1 cos qφ2 cos sφ3
E/κ− cosφ1 − cosφ2 − α cosφ3

×dφ1dφ2dφ3 = (− i)p+q+s+1

×
∫ ∞
0

exp(itE/κ)Jp(t)Jq(t)Js(αt)dt, (32)

where Jn(t) denotes a Bessel function of the �rst kind
of order n and κ = −4t cosKx/2 [39]. Then for 〈r| =
〈p, q, r| = 〈pRxi+ qRyj + rRzk| we can �nd the follow-

ing matrix elements: f
(p,q,r)
x = 〈p, q, r|G+

0 |x〉: f
(p,q,r)
s0 =

gp,q,r, f
(p,q,r)
s1 = (gp−1,q,r + gp+1,q,r + gp,q−1,r + gp,q+1,r +

gp,q,r−1+gp,q,r+1)/
√
6, f

(p,q,r)
px = (gp−1,q,r−gp+1,q,r)/

√
2,

f
(p,q,r)
py = (gp,q−1,r − gp,q+1,r)/

√
2, f

(p,q,r)
pz = (gp,q,r−1 −

gp,q,r+1)/
√
2, f

(p,q,r)
dα

= (gp+1,q,r + gp−1,q,r − gp,q+1,r −
gp,q−1,r)/2, f

(p,q,r)
dβ

= (2gp,q,r+1 + 2gp,q,r−1 − gp−1,q,r −
gp+1,q,r − gp,q+1,r − gp,q−1,r)/(2

√
3).

The fully symmetric 〈x|G+
0 |x〉 are expressible by the

products of elliptic integrals [35, 42], but also can be given

by the above formulae, with f
(0,0,0)
x denoting 〈x|G+

0 |x〉
and gp,q,r denoting 〈p, q, r|G+

0 |x〉 (for p = q = r = 0 in
the left hand side (l.h.s.)). 〈s0|G+

0 |s1〉 = 〈0, 0, 0|G
+
0 |s1〉.

3. Results

3.1. d-wave

In Fig. 1 the results concerning d-wave pairing are
shown. The cross-section of horizontal line t/W ≈
−0.074 (W/t = −13.5) with (real) 〈dα|G0|dα〉 shows the
position of the bound state in agreement with Eq. (15).
The bound state is indicated by the vertical line in the
�gure symbolizing the Dirac delta peak.

Fig. 1. d-wave: Re〈dα|G0|dα〉, bound state (b.s.),
horizontal straight lines are t/W for W/t =
−2,−3,−4,−13.5 (bottom to top) and T +-matrices for
W/t = −2 (dashed), −3 (dotted) and −4 (full line). E0,
Er and Γ given forW/t = −2 by dotted, dot-dashed and
horizontal bar respectively. Vertical bars at E/t = ±12
show extent of the band.

The resonant state connected with W/t = −4 appears
for energy, which is close to E0 ≈ −5, corresponding to
the cross-section of t/W = −0.25 with the real part of
G0 (see Eq. (27)). The approximate energy Er, Eq. (30),
is shown by vertical dot-dashed line. The horizontal bar
at half of the height of that line depicts the approximate
half width, calculated according to Eq. (31). We see that
neither Er nor Γ are accurate.
The peaks of T + move inside the band with decreas-

ing |W | but they do not move past the singularity at
−4 cos(Kx/2), which will be called the resonant band
boundary.
The horizontal dotted line for t/W = −0.33 corre-

sponds to the dotted (positive) plot of T +-matrix for
W/t = −3 and analogous pair of dashed lines for W/t =
−2. Let us note that the absolute value of |t/W | is too
large to cross the Re(G+

0 ), because the latter is bounded.
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Thus the formal condition for the existence of resonant
states, Eq. (27), is not ful�lled, but nevertheless the res-
onant peaks exist and are well de�ned. Such states will
be called quasiresonant. The behavior of the actual

Fig. 2. d-wave, actual peak positions (dashed lines),
actual half-widths (connected by dotted lines to the
peak line), Er (full lines), Γ (connected by full lines
to Er), E0 (dot-dashed lines), for W/t = −10, −7 and
−3.4 (from bottom to top) vs. Kx along ΓR.

Fig. 3. d-wave, actual peak positions of constant half-
-widths equal to (in �t� units): 0.01, 0.1, 0.5, 1, 2, 3, 4,
5, 6, 7, 8 (from bottom to top) along ΓR. Dots are for
half-width bandwidth. Inset: W values described in the
text.

scattering cross-section peak for K on ΓR line is shown
in Fig. 2 for W/t = −10, −7 and −3.4. While for larger
|W | the actual peak is quite narrow and narrower than
approximate Γ , its width grows monotonously with de-
creasing |W |. It becomes larger than Γ and is quite large
when the actual peaks are close to the resonant band
boundary. The actual width decreases with increasing
Kx, when we approach B.z. boundary. In the same time
the energy of the actual peak of T +-matrix monotonously
grows with Kx. This is in contrast with the behavior of
Er and Γ with Kx, which is nonmonotous. Γ can be
quite small for small |W | at Kx = 0 in contrast with
the real width, which is the broadest at K = 0 and di-
minishes to the point at the band boundary, where the
resonant transforms into the bound state, which contin-

ues until B.z. boundary to reach energy E = W �. The
lines of actual peaks' energies corresponding to constant
actual widths are shown in Fig. 3. In the inset we can see
the values of W/t needed to obtain the actual peaks at
the band boundary (lower curve) and on the boundary
between the resonant and quasiresonant states � upper
curve (with peaks very close to the line �4t� in the main
�gure).

3.2. s-wave

Figure 4 is analogous to Fig. 1 with the same deno-
tations but concerns 〈s0|G0|s0〉, i.e., pure s-wave state,
connected only with on-site U attraction (without the
admixture of extended, W -dependent part). The reso-
nant state's T + matrix for U/t = −7.3 is very narrow
and peaked at the band boundary. The quasiresonant
state for U/t = −4 is much wider but also peaked at the
band boundary. That is the largest di�erence with the
d-wave case � s-wave U -connected resonances do not
move inside the band.

Fig. 4. s-wave, T -matrices and t/U values for U/t =
−7 (narrower) and −4 with Re and Im of 〈s0|G0|s0〉.
The rest of denotations as in Fig. 1.

4. Conclusions

In the paper the two-particle T +-matrices are calcu-
lated for tUW model in the empty lattice limit. The
behavior of resonant states connected with the peak
of T +-matrix was examined within symmetry channels
(s and d) and compared with the known approximate
formula. With decreasing Coulomb interactions the rel-
ative height of the peak diminishes but it remains well
de�ned even for interactions so weak that the resonant
state Eq. (27) is not ful�lled. In the same time the peaks
become wider and they travel inside the band in the case
of d-wave (and other W controlled pairings, like p-wave
and, partly, extended s-wave) or stay �glued� at the band

�The author thanks R. Micnas for pointing out that property.
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boundary � case of pure s-wave. The approximate for-
mulae are correct only close to band boundaries; for small
|K| �the correctness range� is wider.
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