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We refer to our recent calculations Eur. Phys. J. B 86, 252 (2013) of metallization pressure of the three-
dimensional simple-cubic crystal of atomic hydrogen and study the e�ect on the crucial results concocting from
approximating the 1s Slater-type orbital function with a series of p Gaussians. As a result, we �nd the critical
metallization pressure pC = 102 GPa. The latter part is a discussion of the in�uence of zero-point motion on
the stabilizing pressure. We show that in our model the estimate magnitude of zero-point motion carries a little
e�ect on the critical metallization pressure at zero temperature.
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1. Motivation

This year we are celebrating the 50th anniversary of
the Hubbard model, a second-quantization language to
describe strongly correlated systems provided indepen-
dently by Hubbard [1], Gutzwiller [2, 3] and Kanamori
[4]. This description shed some light on many-body
quantum systems, in particular on the localization�
delocalization transitions of fermions states in the solid-
state [5�8], and optical-lattice [9] systems. This transi-
tion is called the Mott or Mott�Hubbard transition.
In the series of papers [10�12], we have conducted

model calculations combining both the Mott [5] and
the Hubbard [13] aspects of the phase transition, within
the extended Hubbard model, with a simultaneous renor-
malization of the single-particle Wannier basis, connect-
ing �rst- and second-quantization approach. In [12]
we obtained, using proposed model, the critical met-
allization pressure pC = 97.7 GPa required to stabi-
lize the atomic-hydrogen-like crystal, while having both

the Mott (n
1/3
C aB ≈ 0.2) and the Hubbard (U ≈W ) cri-

teria satis�ed at the same time. Thus, those two criteria
represent two sides of the same coin.
Ever since Ashcroft proposed an explanation for

greater-than-expected magnetic �eld of Jovian planets
[14] by applying the BCS theory to the metallic hydro-
gen, the pursuit of the metallization of this element be-
gan. Predicted by Wigner and Huntington in 1935 [15]
the conducting phase of hydrogen is claimed to have var-
ious properties, including hypothesis of being supercon-
ducting up to the room temperature [14].
In this paper we brie�y describe the model in Sect. 2.

Then in Sect. 3 we review the validity of approxima-
tions made in [12] and show that they were in fact su�-
cient (explicitly redoing all calculations and showing no
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qualitative changes). We also show that both Mott and
Hubbard criteria of localization-delocalization transition
are satis�ed. In Sect. 4 we estimate the magnitude of
zero-point motion energy, omitted in our calculations to
test the strength of our results, keeping in mind the pos-
sibility of quantum melting of hydrogen.

2. Model

We start with the extended Hubbard Hamiltonian de-
scribing a single-band hydrogen system [10�12]:

H = εa
∑
i

ni +
∑
i 6=j,σ

tija
†
iσajσ + U

∑
i

ni↑ni↓

+
∑
i<j

Kijninj +
∑
i<j

2

Rij
, (1)

where tij is the hopping integral, U � the intraatomic
interaction magnitude, εa � the atomic energy per site,
and 2/Rij = 2|Rj −Ri|−1

� ion�ion interaction corre-
sponding to the classical Coulomb repulsion (in atomic
units).
We have the total number of electronsNe =

∑
i ni, and

de�ne the deviation from one-electron-per-atom con�gu-
ration δni = ni − 1. We rearrange [16]:∑

i<j

Kijninj =
∑
i<j

Kijδniδnj +Ne
1

N

∑
i<j

Kij

+(Ne −N)
1

N

∑
i<j

Kij . (2)

For half band-�lling n = Ne/N = 1 the latter part dis-
appears, and we can write

∑
i<j Kij ≈

∑
i<j Kijninj ,

thus introducing the e�ective atomic energy per site

εeff
a = εa + 1

N

∑
i<j

(
Kij + 2

Rij

)
. Let us rewrite the Hamil-

tonian 1 in a following manner:

H = εeff
a

∑
i

ni +
∑
i 6=j,σ

tija
†
iσajσ + U

∑
i

ni↑ni↓

+
1

2

∑
i 6=j

Kijδniδnj . (3)

Since we are interested in calculating explicitly the aver-
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age value 〈H〉, we note that close to the metal�insulator
boundary 〈δniδnj〉 ≈ 0, hence we disregard this term in
the calculation of energy.

2.1. Wave-function optimization

To calculate the microscopic parameters εa, tij ,
Kij , U of the Hamiltonian (3) we choose the basis
of the orthogonalized-to-the-nearest-neighbors Wannier
wi functions constructed from 1s Slater-type orbitals
(STO) Ψi:

wi (r) = βΨi (r)− γ
z∑
j=1

Ψj (r) , (4)

where β and γ (see [10] Eqs. (24) and (25)) are mixing
parameters speci�ed for the topology of the crystal, and
depending explicitly on the overlap integrals of the single-
-particle functions. z is the number of nearest neighbors.
Obtaining the microscopic parameters from the �rst

principles requires several integrations, since

εa = 〈wi |H1|wi〉 , tij = 〈wi |H1|wj〉 ,

U =
〈
wiwi

∣∣∣2|r1 − r2|−1
∣∣∣wiwi〉 ,

Kij =
〈
wiwj

∣∣∣2|r1 − r2|−1
∣∣∣wiwj〉 , (5)

where H1 is the Hamiltonian for a single particle in
the system, and 2|r1 − r2|−1

interparticle interaction in
atomic units. Calculating (5) with basis as given in (4)
requires solving very complicated series of integrals and
can be simpli�ed by approximating STO with a series of
Gaussian functions

Ψi (r) =

√
α3

π
e−α|r−Ri| ≈

α
3
2

p∑
a=1

Ba

(
2Γ 2

a

π

) 3
4

e−α
2Γ2

a |r−Ri|2 , (6)

where Ba and Γa are parameters found by minimizing en-

ergy of the single atom (H1
a.u.
= −52−2|r −Ri|−1

). p is
a number of Gaussian functions used for the approxima-
tion. α is the inverse function size and will remain a vari-
ational parameter, allowing us to renormalize the ground
state function to �nd the minimal energy for given lattice
parameter R. For the sake of completeness we explicitly
illustrate the quality of the approximation (Fig. 1) and
the coe�cient for di�erent STO-pG basis (Table I).

TABLE I

Ba and Γa coe�cient obtained by minimizing the single-particle energy with wave functions given by (6).

STO-3G STO-5G STO-7G STO-9G
aBa Γ 2

a Ba Γ 2
a Ba Γ 2

a Ba Γ 2
a

0.7079069 0.4037496 0.4862397 0.3428813 0.3347926 0.3073439 0.2333815 0.2832535 1

0.3460096 0.897739 0.4687430 0.6489746 0.4947580 0.5341995 0.4735227 0.4656983 2

0.0691531 1.9705714 0.1446282 1.2283203 0.2218991 0.9285009 0.2825582 0.7656564 3

0.0307340 2.3248533 0.0674427 1.6138428 0.1065788 1.2588187 4

0.0093803 4.4002717 0.0188009 2.8050467 0.0341750 2.0696289 5

0.0038829 4.8754978 0.0099417 3.4026852 6

0.0018480 8.4741829 0.0032307 5.5943683 7

0.0006094 9.1977233 8

0.0004466 15.1220138 9

2.2. Ground-state energy

As stated earlier we would like to determine the inverse
wave function size α minimizing the ground-state energy.
To obtain the values for given α and the �xed lattice
parameter R we use statistically-consistent Gutzwiller
approximation (SGA) [17]. We extend the Gutzwiller
approximation Hamiltonian

HGA = εeff
a

∑
iσ

niσ +
∑
ijσ

tijqσa
†
iσajσ +NUd2, (7)

where the double occupancy number d2 = 〈ni↑ni↓〉 and
qσ = 2

(
d
√

1− 2d2 −m+
√
d2 (1− 2d2 +m)

)2

/(1−m2)

for n = 1, by introducing the Lagrange-multiplier
constraints

Cλ = −λm
∑
i

(mi −m)− λn
∑
i

(ni − n) , (8)

where mi ≡ ni↑ − ni↓, m ≡ 〈mi〉, ni ≡ ni↑ + ni↓, and
n ≡ 〈ni〉.
Finally, we use the operator K = HGA + Cλ as our

e�ective Hamiltonian. Mean �elds d2 and m, as well as
the Lagrange multipliers λm and λn, and the chemical
potential µ are all determined variationally.
Once the ground-state energy is found as a minimal

value for some αmin, we get the set of values � the micro-
scopic parameters (5) in the ground state. Below we dis-
cuss the properties of our results in comparison to those
obtained earlier [12].
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Fig. 1. Approximations of Slater 1s function centered
on-site with di�erent Gaussian resolution p (see (6) and
Table I) for α = 1.2 with respect to distance r from
the ion. Inset: details for small distances. Note that
the biggest contribution to the error is given by the part
close to the node, hence small total error after integrat-
ing over whole space. As expected the 9 Gaussian basis
(STO-9G) is far the best approximation.

3. Gaussian basis resolution

In our previous approach [12] we favored the Gaussian
basis consisting of 3 functions. We argued that the qual-
ity of such an approximation is su�cient, and that the nu-
merical e�ort to obtain results in higher Gaussian reso-
lutions (p > 3) is unnecessary. The computational com-
plexity scales

εa, t ∝ p2,

U,Kij ∝ p4, (9)

where p is the resolution. Hence the time of calculating
the full set of data points is increased by a factor of 200
when replacing STO-3G to STO-9G basis.

3.1. STO-3G versus STO-9G

For our ab initio calculations we have selected STO-9G
basis. It is much better (cf. Fig. 1) than STO-3G, while
time of the calculation is still acceptable.
The dependence of the ground-state energy EG with

respect to the lattice parameter R (Fig. 2) is the main
outcome. Similarly to the previous case [12], there are
two local minima � one associated with the metallic
phase (d2 6= 0), and one with the Mott insulating phase
(d2 = 0). The transition occurs at R = RC = 4.12a0

(compared to Rold
C = 4.1a0), but its nature is not

changed, as it still is a weakly discontinuous transition
(observe the obvious discontinuity of double occupancy
number, cf. inset in Fig. 2).
In Fig. 3 we plot the values of the nearest-neighbor

hopping (−t), on-site repulsion U , and the nearest-
-neighbor intersite repulsion K. Even though there are
no qualitative changes in the values in comparison with
[12] we present this for the sake of completeness.

Fig. 2. Ground-state energy versus lattice parameter
R for di�erent STO-pG basis. Note more realistic be-
havior in the metallic (R < RC = 4.12a0) regime with
non-trivial R dependence. Inset: double occupancy
mean �eld versus lattice parameter R for di�erent STO-
pG basis. Note no qualitative changes of behavior.

Fig. 3. The microscopic parameters t, U and K versus
lattice parameter R. Inset: U/W ratio with bandwidth
W = 2z|t| and on-site repulsion U .

In Ref. [12] we have shown that our transition satis-
�es both the Mott and the Hubbard criteria for metal�
insulator transition. Below we refer to them while dis-
cussing the new results.

3.2. The Mott and the Hubbard criteria

The original Mott criterion [5,6] n
1/3
C aB ≈ 0.2 can be

rewritten by substituting α−1 for the e�ective Bohr ra-
dius aB and de�ning the particle density as nC = R−3

C .

We get n
1/3
C aB = R−1

C α−1 ≈ 0.22, a slightly better out-
come than in [12] (as it is predicted with a better accu-
racy).
As shown in inset to Fig. 3, the ratio (U/W ) for crit-

ical lattice parameter RC = 4.12a0 is equal to 1.18 in
consistence with [13].
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3.3. Metallization pressure

Our model represents a 3-dimensional simple-cubic
crystal of the atomic hydrogen (one electron per ion, 1s
orbitals) undergoing the Mott�Hubbard transition. It is
clear that the minimal value of energy (cf. Fig. 2) of
such a crystal is reached for lattice parameter R → ∞.
Thus one require external pressure p for its stabiliza-
tion, that can be obtained classically as the force per cell
F = |−∇REG| over the elementary cell area A/N = R2.
In Fig. 4 we plot such pressure versus lattice parame-
ter R and provide a comparison between the previously
obtained (STO-3G [12]) results and the new ones.

Fig. 4. Stabilizing pressure for a simple-cubic atomic
solid hydrogen crystal versus lattice parameter R for
di�erent STO-nG basis. Note only a slight change
in obtained critical pressure pC = 102 GPa for sig-
ni�cantly larger STO-9G basis. The qualitatively dif-
ferent behavior of stabilizing pressure in the metallic
(R < RC = 4.12a0) regime is caused by non-trivial be-
havior of energy in this regime (see Fig. 2 for details).

We have calculated the metallizing pressure pC = 102
GPa assuming that our model is static � this assump-
tion is not quite correct within the quantum-mechanical
world, where there is always a non-zero energy of zero-
point oscillations. In the next section we deal with this
problem by estimating the contribution of zero-point mo-
tion to the total energy.

4. Zero-point motion energy

We introduce (following approach similar to [18])
the uncertainties of the momentum δP and position δR.
The energy of a distortion per ion is

∆E =
δP 2

2MH+

+
1

2

∑
i ∈ {x, y, z}

(
e2

R+ δRi
+

e2

R− δRi

)
. (10)

By applying the uncertainty relation δP 2 · δR2 ≥ 3~2/4
and minimizing 10 with respect to Ri's we get a set of
local extrema, from which the global minimum is

∆E0 = 3
e2

R
+

~
(

4
√

6eMR+
√
M
√
R~
)

8M3/2R5/2
, (11)

|δR0| =
√

3R2

2
√

6 e~
√
M
√
R+ 1

, (12)

where R is the lattice parameter. The �rst term of (11)
is related to the Coulomb repulsion of ions and the sec-
ond EZPM ≡ ∆E0 − 3e2R−1 is the zero-point oscillation
energy.

Fig. 5. The relative magnitude of estimated zero-point
motion energy with respect to ground-state energy at
given lattice parameter R. Note that result below 0.5 at
the metal�insulator transition shows that the correction
from ZPM to the critical pressure can be disregarded.
Inset: explicit value of estimated zero-point motion en-
ergy.

In Fig. 5 we show the ratio of |EZPM| to the ground-
state energy |EG|. Since it is slowly-changing and is
about two orders of magnitude smaller than the ground-
state energy, our approach of omitting it in the calcula-
tion of metallization pressure holds.

5. Conclusions

In this paper we established that the choice of
the STO-3G basis in [12] was not in�uencing results qual-
itatively, and that the computational simplicity and to-
tal CPU time conservation are allowing us to examine
also a full picture with an external magnetic �eld, pre-
serving main properties of the system. Better accuracy
(Sect. 2.1) increases the quality of the results (cf. Fig. 2),
but does not change our understanding of the metal�
insulator transition in this model.
The analysis of zero-point motion carried out in Sect. 4

reinforces our previous results and suggests that the en-
ergy of oscillations does not increase the stabilization
pressure signi�cantly.



A-62 A.P. K¡dzielawa

Acknowledgments

I would like to thank Prof. Józef Spaªek for critical
reading of this paper as well as Dr. Andrzej Biborski
and Marcin Abram for discussions.
The work was realized as a part of the TEAM project

awarded to our group by the Foundation for Polish Sci-
ence (FNP) for the years 2011�2014.

References

[1] J. Hubbard, Proc. R. Soc. (London) 276, 238
(1963).

[2] M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).

[3] M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965).

[4] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

[5] N.F. Mott, Proc. Phys. Soc. Sec. A 62, 416 (1949).

[6] N.F. Mott, Metal�Insulator Transitions, 2nd ed.,
Taylor and Francis, London 1990.

[7] F. Gebhard, The Mott Metal�Insulator Transition,
Springer, Berlin 1997.

[8] M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys.
70, 1039 (1998).

[9] I. Bloch, Understanding Quantum Phase Transitions,
Ed. L.D. Carr, CRC Press, Boca Raton 2011, Ch. 19.

[10] J. Kurzyk, W. Wójcik, J. Spaªek, Eur. Phys. J. B
66, 385 (2008), Part I.

[11] J. Spaªek, J. Kurzyk, R. Podsiadªy, W. Wójcik, Eur.
Phys. J. B 74, 63 (2010), Part II.

[12] A.P. K¡dzielawa, J. Spaªek, J. Kurzyk, W. Wójcik,
Eur. Phys. J. B 86, 252 (2013), Part III.

[13] J. Hubbard, Proc. R. Soc. (London) 281, 401
(1964).

[14] N.W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

[15] E. Wigner, H.B. Huntington, J. Chem. Phys. 3, 764
(1935).

[16] A. Rycerz, Ph.D. thesis, Jagiellonian University 2003.

[17] J. J¦drak, J. Kaczmarczyk, J. Spaªek,
arXiv:1008.0021 2010.

[18] J. Spaªek, R. Podsiadªy, W. Wójcik, A. Rycerz, Phys.
Rev. B 61, 15676 (2000).

http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1103/PhysRevLett.10.159
http://dx.doi.org/10.1103/PhysRev.137.A1726
http://dx.doi.org/10.1143/PTP.30.275
http://dx.doi.org/10.1088/0370-1298/62/7/303
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1140/epjb/e2008-00433-1
http://dx.doi.org/10.1140/epjb/e2008-00433-1
http://dx.doi.org/10.1140/epjb/e2010-00077-6
http://dx.doi.org/10.1140/epjb/e2010-00077-6
http://dx.doi.org/10.1140/epjb/e2013-40127-y
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1098/rspa.1964.0190
http://dx.doi.org/10.1103/PhysRevLett.21.1748
http://dx.doi.org/10.1063/1.1749590
http://dx.doi.org/10.1063/1.1749590
http://th-www.if.uj.edu.pl/ztms/download/phdTheses/Adam_Rycerz_doktorat.pdf
http://arXiv.org/abs/1008.0021
http://dx.doi.org/10.1103/PhysRevB.61.15676
http://dx.doi.org/10.1103/PhysRevB.61.15676

