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We present the analysis of paramagnetic effects of magnetic field (B) (Zeeman term) in the zero-bandwidth
limit of the extended Hubbard model for arbitrary chemical potential xu and electron density n. The effective
Hamiltonian considered consists of the on-site interaction U and the intersite charge exchange term I, determining
the hopping of electron pairs between nearest-neighbour sites. The model has been analyzed within the variational
approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field
approximation (rigorous in the limit of infinite dimensions d — 4+o00). In this report we focus on metastable
phases as well as phase separated states involving superconducting and nonordered phases and determine their
ranges of occurrence for U/Iy = 1.05 (Ip = zI) in the presence of magnetic field B # 0. Our investigations of the
general case for arbitrary U/Iy show that, depending on the values of interaction parameters (for fixed n), the
phase separating state can occur in higher fields than the homogeneous superconducting phase (field-induced phase
separated). Moreover, a first-order superconducting—nonordered transition occurs between metastable phases and
these metastable phases can exist inside the regions of the phase separated state stability. Such behaviour is

associated with the presence of tricritical line on the phase diagrams of the system.
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1. General formulation

The purpose of the present work is the analysis of para-
magnetic effects of magnetic field (the Zeeman term) on
metastability in the zero-bandwidth limit of the extended
Hubbard model with pair hopping interaction [1-5] (i.e.
the t =0 limit of the so-called Penson-Kolb—Hubbard
(PKH) model).

The PKH model is one of the conceptually simplest ef-
fective models for studying superconductivity of the nar-
row band systems with short-range, almost unretarded
pairing [5-15]. The model includes a nonlocal pairing
mechanism that is distinct from on-site interaction in the
attractive Hubbard model and that is the driving force
of pair formation and also of their condensation.

Because of the complexity of the PKH model there
are no exact solutions for that model. In this paper we
present the d — +oo exact results for the PKH model
with t = 0. We extend our investigations of the model to
the case of finite external magnetic field B and concen-
trate on metastable phases and phase separations in the
case of B # 0.

Our starting point is the model with the Hamiltonian
given by

H=UY i, =1 (5] p; + 5} p7)
i (i)

—nY =B 5, (1)
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where TALZ = Za TALiU, [):r = (ﬁ;)T = é:%é;i, ﬁio’ = éz;éig,
and 87 = (1/2)(f;4 — Nyy) is z-component of the total
spin at 7 site. éj; and ¢;, denote the creation and anni-
hilation operators, respectively, of an electron with spin
o =7, at the site i, which satisfy standard fermion an-
ticommutation relations

{éiav é;ro-/} = 5ij500’7

{Cio,8jor} = {¢, 8], } =0, (2)
where d;; is the Kronecker delta. U is the on-site density
interaction, I is the intersite charge exchange interaction
(pair hopping) between nearest neighbours, B = gugH,
is the external magnetic field, and g is the chemical po-
tential, determining the concentration of electrons by the
formula

1 .

n=N 21: (), (3)
with 0 <n < 2. (A) denotes the average value of the
operator A in the grand canonical ensemble, and N is
the total number of lattice sites. Z@.’j) indicates the
sum over nearest-neighbour sites ¢ and j independently.
We also introduce Iy = zI, where z is a number of the
nearest-neighbour sites.

It is important to mention that model (1) on the alter-
nate lattices exhibits two symmetries. The first one is a
symmetry between I > 0 (s-pairing, SS, A = & >~,(p7))
and I < 0 (n-pairing, S, A,s = % > exp(iQ - Ry){(p; ),
Q is half of the smallest reciprocal lattice vector) cases in
the absence of the field conjugated with the SS order pa-
rameter A. Thus in the following we restrict our analysis
to the I > 0 case only. Notice that in the presence of fi-
nite single electron hopping ¢ # 0 the symmetry is broken
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in the general case [6-12]. The second one is the particle—
hole symmetry [2, 3, 16], thus the phase diagrams ob-
tained are symmetric with respect to half-filling and they
will be presented only in the range i = u — U/2 < 0 and
0<n<l.

Model (1) has been intensively investigated for
B =0]1,2,4, 17-20] as well as for B # 01, 3] (in partic-
ular, in the context of the phase separation [2, 3, 5] (for
B =0, B#0) and metastable phases [4] (for B = 0)).
The analysis has been performed within a variational ap-
proach (VA), which treats the U term exactly and the in-
tersite I interaction within the mean-field approximation
(MFA) (which is a rigorous treatment of the I term in the
limit of infinite dimensions d — oo [2-5, 18]). As a re-
sult for the thermodynamic limit, one gets two equations
for n and A, which are solved self-consistently. Equations
for the energy and other thermodynamical properties are
derived explicitly in Refs. [1-3, 5]. |A| # 0 in the super-
conducting (SS) phase, whereas in the nonordered (NO)
phase |A| = 0. For fixed n, model (1) can exhibit also
the phase separation (PS: SS/NO), which is a state with
two coexisting domains (SS and NO) with different elec-
tron concentrations, n_ and n,. The free energy of the
PS state is derived in a standard way, using Maxwell’s
construction (e.g. [2, 3, 5, 21]). It is important to find
homogeneous solutions for all local minima (even very
low ones) with respect to | A| of grand canonical potential
w(p) (or free energy f(n)) if system is considered for fixed
u (or n). The solution (of the set of two self-consistent
equations for n and A) is related to a metastable phase if
it corresponds to a (local) minimum of w (or f) with re-
spect to |A| and the stability condition du/0n > 0 (sys-
tem with fixed n) is fulfilled. Otherwise, the phase is
unstable. A stable (homogeneous) phase is a metastable
phase with the lowest free energy (among all metastable
phases and phase separated states).

2. Results and discussion

Let us distinguish six regions which can occur on the
phase diagrams: (1) only the NO phase is stable; (2) only
the SS phase is stable; (3) NO(SS) — in the region
of the NO phase stability the SS phase is metastable;
(4) SS(NO) — the NO phase is metastable in the region
of the SS phase stability; (5) PS(NO,SS) — the PS state
has a lowest energy, the both homogeneous phases are
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Fig. 1. The ground state phase diagrams as a function

of i/Iy (a) and n (b) (& =p —U/2, Ip = zI). Details
in text in Sect. 2.1 (cf. also Fig. 2).

K.J. Kapcia

metastable, and the SS phase has a higher energy than
the NO phase; (6) PS(SS,NO) — the same as in region
(5), but here the NO phase has a higher energy than the
SS phase. Above denotations are used (interchangeably)
in Figs. 1-3.

2.1. The ground state (kT /Iy =0)

The ground state (GS) phase diagrams are presented in
Fig. 1. Notice that metastable phases can occur only at
kgT > 0 and the boundaries in Fig. 1 of the metastable
phases occurrence are the extensions from infinitesimally
small T > 0, formally. At T = 0 one phase (state) can
be stable only. At the GS the discontinuous SS-NO
transition occurs at (U + B)/Iy = (i/Io)* + 1 (for fixed
||/ Io < 1) whereas the continuous SS-NO transition oc-
curs at |fi|/Ip =1 and (U + B)/Iy < 2. The PS state
(SS/NO) stability region is determined by conditions:
(U+B)/Ip<2and [n—1?><(U+B)/Ip—1 (n#1).
At n =1 (f = 0) the discontinuous SS-NO transition oc-
cur for (U + B) /I = 1. The extension (to the GS) of the
discontinuous transition line between metastable phases
(SS and NO) is located at (U + B)/Ip =1+ |1 — n| (for
fixed n). The boundaries for the regions of the metasta-
bility of homogeneous phases close to the GS are lo-
cated at: for the NO phase, (U + B)/Iy = 2|j|/Iy and
|@|/Io <1 (U+ B)/Ip =2|n—1|, any n); for the SS
phase, (U + B)/Ip =2 and ||/Iop < 1 (and any n). No-
tice that for the homogeneous SS phase the condition
Op/On > 0is fulfilled at T' = 0 (in particular in the ranges
of the PS state occurrence), whereas du/0n =0 in the
NO phase [2, 3]. Let us point out that for T'= 0 the
discontinuous transition between two NO phases with
|n—1] = 1 (empty/full-filled) and n = 1 (half-filled Mott
state) occurs at (U + B)/Iy =2|a|/Io and |@|/Io > 1,
but it does not exist for any kg7T/Iy > 0. In fact, the
homogeneous NO phase for n # 1 is degenerated with
the PS state in which two domains of the NO phase
(withn_ =0andny =1forn<lorn_ =1landn, =2
n > 1) exists. This degeneration is removed for any
T > 0 and such a PS state does not exist at 7" > 0.

2.2. Finite temperatures (kT /Iy > 0)

The complete phase diagram of the model has been de-
termined in [1-5]. The system analysed shows very inter-
esting multicritical behaviour including tricritical points.
Depending on the values of model parameters, the system
can exhibit not only the homogeneous phases (SS and
NO), but also the phase separated states (PS: SS/NO).
All transition temperatures and the SS phase metasta-
bility boundary are decreasing functions of U/I, and
B/Iy [2-4]. Only the NO phase metastability boundary
can exhibit non-monotonic behaviour [4].

Let us start the discussion of the behaviour of the
system for the case 1 < U/Iy < 2. As an example, the
phase diagrams for U/I; = 1.05 and B/Iy = 0 are shown
in Fig. 2. The SS-NO transition with increasing temper-
ature can be second-order (continuous change of A, the
transition temperature decreases with increasing |f|/Io
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Fig. 2. Finite temperature diagrams for U/l = 1.05

and B/Ip =0 as a function of /Iy (a) and n
(b). Dotted, solid and dashed lines indicate first-
-order, second-order and “third-order” boundaries, re-
spectively. Dashed-doted lines indicate the boundaries
of metastable phase occurrence (names of metastable
phases in brackets). T denotes tricritical point. Details
in text in Sect. 2.2.
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Fig. 3. B/Iy vs. ksT/I, phase diagrams for

U/Iy = 1.05 and n = 0.15,0.40,0.80 (as labelled). De-
notations as in Fig. 2. Labels (1)—(6) defined at the
beginning of Sect. 2. Dashed-dotted-dotted lines (parts
(a),(b)) schematically denote location of the NO phase
metastability boundaries (which can occur for other val-
ues of U/Ip and n than shown). Details in text in
Sect. 2.2.

and |n — 1|) as well as first-order (discontinuous change
of A, the transition temperature increases with increas-
ing |f|/Ip). It is rather obvious that the regions of the
metastable phases occurrence are present near the first-
order SS-NO transition (for fixed fi), i.e. above the tran-
sition temperature the SS phase is metastable (region
(3)), whereas below the transition temperature the NO
phase is metastable (region (4)), Fig. 2a. If the system
is analysed for fixed n, the first-order SS-NO transition
line (for fixed ) splits into two “third-order” lines (SS-PS
and PS-NO) [2-4]. Both “third-order” transition temper-
atures increase with increasing |n — 1| (Fig. 2b). At this
transition a size of one domain in the PS state decreases
continuously to zero at the transition temperature. In
the region of the PS state occurrence (where the PS state
has the lowest energy fps) the first-order SS-NO tran-
sition between two metastable (homogeneous) phases is
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present (the transition temperature increase with increas-
ing |n — 1]). Below this line the energy of the NO phase
is the highest (i.e. fno > fss > fps, region (6)), whereas
above the line the energy of the SS phase is the highest
(i.e. fss > fno > fps, region (5)), cf. also Fig. 3. The
line of the SS-NO first order transition between stable
phases for fixed i (metastable phases for fixed n) ends
at T=0and 1 <0 (n <1). One metastable phase (SS
or NO) can also be present in the regions of homoge-
neous phases (NO or SS, respectively) stability for fixed
n (where the PS state does not exist), Fig. 2b.

Let us discuss the behaviour of the system with in-
creasing n < 1 for U/Iy = 1.05. In Fig. 3 we present a
few exemplary B/Iy vs. kgT /I, phase diagrams obtained
for U/Iy = 1.05 and fixed n (n = 0.15, 0.40, 0.80). One
can distinguish five essentially different cases. (i) For
small n (0 < n < 0.159), the tricritical T-point (associ-
ated with a change of the transition order) is present
on the phase diagram (Fig. 3a). With increasing n the
kgT/Iy-coordinate of the T-point increases, whereas its
B/Iy-coordinate decreases. At n = 0.159 the T-point is
located at B =0. (ii) For higher n (0.159 < n < 0.475)
all five boundaries remaining on the phase diagrams
(i.e. two of “third-order”, one of first-order between
metastable phases, and two of metastable phase occur-
rence) end at B/Ip =0 and do not have any points
in common (Fig. 3b). These five boundaries move to-
wards lower values of B/Iy and kgT/Iy with increas-
ing n and finally three of them vanish continuously at
(kT'/Iy, B/I) = (0,0), whereas two other lines (i.e. the
PS-NO “third-order” line and the SS phase metastabil-
ity boundary) are fixed at B/l =0.95 for T =0. As
the first one, the boundary of the NO phase metasta-
bility vanishes at n = 0.475. (iii) For 0.475 < n < 0.776
there is not any region, where the NO phase is unsta-
ble (region (2) does not occur on the diagram). (iv) For
0.776 < n < 0.950 the region of the SS phase occurrence
does not exist and for low temperatures only the PS state
is stable (the SS phase can be metastable only, region (4)
is not present on the diagram, Fig. 3c). (v) At n = 0.950
the boundary of the SS-NO first-order transition between
metastable phase disappears and for 0.950 < n < 1 below
the PS-NO line only region (5) occurs, which shrinks to-
wards lower T with increasing n. At n = 1 the PS state
does not occur, there is no transitions with increasing
kpT/Iy (the NO phase has always the lowest energy) and
the SS phase in metastable in a certain range of model
parameters B/Iy and kgT'/Iy.

Notice that the boundary of the SS phase metastability
is independent of n (and f) and this line is a projection
of the tricritical line (on the B/Iy—kpT/Iy plane in the
case of the B/Iy vs. kgT/Iy diagrams). For small n, in
the presence of T-point, the boundary does not exist for
low B/I, (Fig. 3a).

For smaller values of U/Iy <1 not all behaviours
(i)—(v) discussed above and presented in Figs. 3a—c occur
and four new types of phase diagrams can appear. Two
of them are (i) and (i), whose structures are similar to
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these of (i) and (ii), respectively. The only difference is
that the both ends of the NO phase metastability bound-
ary are located at T' > 0 (in particular, the end at lower
T is for B = 0) and the NO phase is unstable (region (2))
only at some T > 0 (cf. lower dashed-dotted-dotted lines
in Fig. 3a,b). Moreover, the boundary of the NO phase
metastability can be non-monotonic as in the cases (i”)
and (ii”) and can end at T'= 0 and B > 0 (as in the cases
(i) and (ii)). Thus two more new types: (i’) and (ii’) can
occur, cf. upper dashed-dotted-dotted lines in Fig. 3a,b.
In general, there is a continuous change from (i) and (ii)
cases to (i) and (ii”) cases, respectively.

In particular, the following sequences of structures of
diagrams with increasing n <1 occur (some of them
in very narrow ranges of model parameters): (a) for
U/Iy < 0: only case (i); (b) for 0 < U/l < 0.462: (i),
(i"), and (i”) (because the SS-NO transition is always
second-order at B =0 for U/Iy < 2In2, cf. Fig. 3a);
(c) for 0.462 < U/Iy < 0.482: (i), ('), (i), and (ii”) (for
U/Iy > 0.462 the T-point can occur at B = 0); (d) for
0482 < U/Iy < 0.557: (i), (i'), (ii"), and (ii”) (the T-
point at B =0 moves toward lower n with increasing
U/Iy > 2In2 [2]) (e) for 0.557 < U/Iy < 0.566: (i), (i),
(it"), (ii”), and (iii) (for U/Iy > 0.557 the NO phase is
metastable for any T near n =1 for B =0 [4] and case
(iii) appears); (f) for 0.566 < U/Iy < 0.666: (i), (ii), (ii"),
(ii”), and (iii); (g) for 0.666 < U/Iy < 1: (i), (ii), (i),
and (iii) (no re-entrance of region (2) for B = 0 with in-
creasing 7', the boundary of the NO phase metastability
is monotonic at B = 0 for U/Iy > 0.666 [4]).

On the contrary to the case 1 < U/Iy < 2 discussed
previously, in above cases (a)—(g) “third-order” PS-SS
and first-order SS-NO (metastable) boundaries connect
together at n = 1. For n = 1 and kgT'/Iy < 1/3 the first-
order SS-NO transition between stable phases is present
(cf. Fig. 5 in [3]) and the metastable phases exists in
the neighbourhood of this transition (cf. also Fig. 1
in [4]). At n =1 the PS state does not occur. The NO
metastability boundary vanishes continuously to a point
at T=0 (B=0) (the change from (ii’) to (iii)) or at
T >0 (B =0) (the change from (ii"”) to (iii)).

For U/Iy > 2 only the NO phase is stable. There is
no metastable phases and no transitions with increasing
ks T/ Io.

Notice that determined regions of metastable phases
occurrence can be smaller than they actually are due to
finite numerical accuracy of local minima finding. This
issue can be crucial for determination of (ii’) case occur-
rence, in particular for 0.666 < U/Iy < 2.

3. Final remarks

The superconductivity with extremely short coherence
length and the phase separation phenomenon involv-
ing SS states are very current topics (for a review see
[2-5, 16, 22, 23] and references therein). It is worthwhile
to notice that metastable and unstable states as well as
phase separation have been found in many physical sys-
tems experimentally and theoretically. Let us note that
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the temperature dependence of the upper critical field
in unconventional superconductors has a positive curva-
ture in coincidence with results of Fig. 3 (cf. PS-NO
“third-order” line). Obviously the macroscopic PS state
founded is different from the Abrikosov—Shubnikov mixed
state in type-II superconductors [3], e.g. no vortex lat-
tice, no magnetic flux quantization, etc. The results pre-
sented in this paper are an extension of our previous in-
vestigations of model (1) to the case of B # 0 involving
the consideration of metastable phases and phase separa-
tion. Model (1) can be considered as a relatively simple,
effective model of a superconductor with local electron
pairing [1-4, 16]. Moreover, the knowledge of the exact
d — 400 results for the ¢t = 0 limit of the PKH model can
be used as a starting point for a perturbation expansion
in powers of the hopping ¢ and provides a benchmark
for various approximate approaches analysing the corre-
sponding finite bandwidth models.

In the model considered the external magnetic field
only acts on the spin through the Zeeman term (the para-
magnetic effect). At arbitrary T > 0 the system is spin
polarized with non-zero magnetization if B # 0. A cu-
rious issue of the orbital contribution through the pair
hopping (the diamagnetic effect) [8, 11, 20] is left for fu-
ture investigations. Nevertheless, in materials with heavy
electron mass (narrow bands) or multiple small Fermi
pockets the paramagnetic effect becomes crucial. For in-
teracting fermions on non-rotating optical lattices also
only paramagnetic effect can occur.

The interplay and competition between supercon-
ductivity and intersite magnetic [24-28] or density—
density [16, 29-36] interactions is a very interesting prob-
lem. Some results concerning the interplay of these inter-
actions with the pair hopping term for B = 0 have been
presented in [5, 36-41].
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