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The absence of the antiferromagnetic order in Nd0.9Ca0.1BaCo2O5.5 has been found to remain unchanged by
applying a hydrostatic pressure of 10 kbar. In magnetic studies of polycrystalline Nd0.9Ca0.1BaCo2O5+δ (δ =
0.07−0.69), we have found a reappearance of the antiferromagnetic phase, caused by an increase in oxygen index
δ above 0.51 related to extra oxygen ions addition into the NdOδ plane. For the samples with δ = 0.555 and 0.59,
a coexistence of well developed antiferromagnetic phase with ferrimagnetic one is evidenced.
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1. Introduction

The layered perovskites RBaCo2O5+δ (R = lanthanide
ion or Y, δ = 0.5) are characterized by the sequence of
complex magnetic and electronic phase transitions ob-
served with increasing temperature: antiferromagnet�
ferromagnet (AFM-FM, TN = 200−250K), ferromagnet�
paramagnet (TC = 280−310 K), and insulator�metal
transition (TMIT = 330−360 K), which can be tuned by a
substitution at the R-, Ba-, and Co-sites or by a change of
oxygen content 5+ δ [1�6]. The perovskite-related struc-
ture [3] consists of aligned along the c-axis layers of ROδ�
CoO2�BaO�CoO2. Each Co ion is coordinated by 5 or 6
oxygen ions, forming pyramid or octahedron, depending
on the oxygen index δ. The variation of δ index leads to
addition or removal of oxygen ions from the ROδ planes,
changing the ratio of the Co octahedral/pyramidal coor-
dination, and altering charge doping of the CoO2 planes.
For δ = 0, i.e. for the compound with no oxygen in ROδ
layer, all Co ions are pyramidally coordinated (CoO5)
and gradual increase of δ up to 1 leads to transition to
octahedral coordination of all Co ions (CoO6). For the
compound with δ = 0.5, there is an additional order of
octahedrally and pyramidally coordinated planes along
the b-axis. Variation of δ value leads to the changes in
the formal valence of Co ions. For δ = 0.5, only Co3+

ions are present. A small shift from that value leads to
hole-doping (Co4+) or electron-doping (Co2+). Taskin et
al. [4] have shown very strong dependence of the ground
state on oxygen content; i.e., on simultaneous changes of
coordination and charge doping for GdBaCo2O5+δ: from
charge-ordered insulating antiferromagnet (δ = 0), to op-
timally doped insulator (δ = 0.5), and �nally to metallic
ferromagnet (δ = 0.7). On the contrary, the heterova-
lent substitutions at R- and Ba-sites for the �xed oxygen
content do not a�ect oxygen vacancy ordering but only
alter charge doping of the CoO2 planes.
The hole doped system of Nd1−xCaxBaCo2O5.5 (x =

0−0.2) is characterized by mixed valence of Co3+ and
Co4+ ions with ferrimagnetic interactions between them.

Upon Ca2+ substitution for Nd3+ at the R-site the tem-
perature of antiferro�ferrimagnetic phase transition is
drastically suppressed. At 10% Ca content this magnetic
transition is completely absent and antiferromagnetic or-
der does not appear [5, 6]. In this work we show that
the reappearance of antiferromagnetic phase is possible
by variation of δ in Nd0.9Ca0.1BaCo2O5+δ.

2. Experimental details

Polycrystalline samples of Nd0.9Ca0.1BaCo2O5+δ with
δ = 0.07−0.69 have been obtained by using a stan-
dard solid-state synthesis method described in detail
in Ref. [3]. Single-phase samples were annealed in ar-
gon or oxygen at various temperatures and the oxygen
content was established by thermogravimetric measure-
ments. X-ray di�raction experiments were performed
in a Rigaku di�ractometer. Magnetic measurements
were carried out using a Magnetic Property Measurement
System (Quantum Design) in the temperature range of
5�380 K in magnetic �elds up to 50 kOe. An external
hydrostatic pressure up to 10 kbar was applied, using
an easyLab Technologies Mcell 10 pressure cell. A high-
purity Sn wire (0.25 mm in diameter) was employed as
an in situ manometer.

3. Results and discussion

X-ray di�raction patterns for the studied
Nd0.9Ca0.1BaCo2O5+δ samples are presented in Fig. 1.
The evolution of the crystal structure with δ is similar
to the one for undoped RBaCo2O5+δ [4]. For δ ≤ 0.25,
this material adopts a tetragonal structure. In the range
0.40 ≤ δ ≤ 0.555, the vacancy-ordered orthorhombic
structure is observed, in particular from the splitting of
the 040 and 200 peaks between 46 and 47 deg. Further
oxidation for δ ≥ 0.59 changes the structure into tetrag-
onal one with smaller lattice parameters. Figure 2a
presents the temperature dependence of magnetization
for Nd0.9Ca0.1BaCo2O5+δ with δ = 0.43−0.69, measured
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Fig. 1. X-ray di�raction spectra for
Nd0.9Ca0.1BaCo2O5+δ. The intensity data are
presented in a logarithmic scale and shifted for clarity.

using ��eld-cooling� procedure (MFC) in a magnetic �eld
of 1000 Oe. An antiferromagnetic phase is not present
for the oxygen content δ varying from 0.5 down to
0.43. The TC decreases from 310 K for the sample with
δ = 0.5 [5] to 295 K for δ = 0.43. For δ = 0.555, we have
observed a signi�cant decrease of magnetization with
a small cusp near 235 K (Fig. 2b). Below 235 K, the
MFC decreases, but not falls to zero, which may be an
indication of appearance of antiferromagnetic ordering
in ferrimagnetic matrix. At around 140 K, a smooth
plateau is well developed. From M(T ), we can estimate
TN = 230 K and TC = 245 K, which is considerably
lower than TC for the samples with δ ≈ 0.5. The Ca2+

hole-doping results in mixed valence of Co3+�Co4+.

Fig. 2. The temperature dependence of magnetiza-
tion recorded in magnetic �eld of 1000 Oe for
Nd0.9Ca0.1BaCo2O5+δ with δ ≥ 0.43 (a) and with
δ = 0.07−0.555 (b).

It was suggested [5] that interactions between Co3+

and Co4+ ions lead to ferrimagnetic ordering. An in-
crease of δ up to 0.555 results in further hole-doping,
which increases the number of Co3+�Co4+ pairs, but
also disorders Co�O network by formation of larger num-
ber of CoO6 octahedra at the expense of CoO5 pyra-

mids. It seems that disorder, induced by oxygen content
change, is responsible mainly for a decrease of TC for
Nd0.9Ca0.1BaCo2O5.555 since the same tendency was re-
ported by Taskin et al. [4] for GdBaCo2O5.5+δ.

Further increase in oxygen content results in shift of
a cusp in M(T ) dependence down to about 110 K for
δ = 0.59, correlated with an increase in magnetization
value. One can observe a further decrease in TN and
TC for higher oxygen contents, which con�rms the im-
portant role of oxygen vacancy ordering in regulating of
both TN (= 90 K) and TC (= 130 K). Then, the reap-
pearance of the phase transition from antiferromagnetic
to ferrimagnetic phase by degrading the oxygen vacancy
ordering is possible. Further increase in oxygen content
for δ above 0.6 results in a complete collapse of oxygen va-
cancy ordering, evidenced by a vast increase in magneti-
zation. Here, the material adopts a tetragonally distorted
perovskite structure with oxygen vacancies distributed
randomly across the crystal lattice. Figure 2b presents
the M(T ) dependence for Nd0.9Ca0.1BaCo2O5.555 and
for selected electron-doped compositions with δ ≤ 0.4,
recorded inMZFC and ��eld-cooling� mode. Taskin et al.
[4] have shown a decrease in both TN and TC as a result of
electron doping by oxygen removal from GdBaCo2O5.5+δ.
In our case, the situation is di�erent. Starting from 295 K
for δ = 0.43, the TC increases to 340 K with a decrease
in δ down to 0.34 (not shown in the �gure), and again
decreases to 295 K with a further decrease in δ to 0.25.
In the case of removing the oxygen ions from ROδ, we
have found a gradual decrease in magnetization, but the
compositions remain ferrimagnetic without a noticeable
decrease in TC for oxygen content lowered to δ = 0.07,
where a complete disappearance of spontaneous ordering
for the whole investigated temperature range is noticed.

Figure 3a presents the �eld dependences of the magne-
tization recorded at 5 K for the samples with δ values of
0.5 and above. One can see the smallest value ofM at the
highest applied �eld for the sample with δ = 0.555, and
the highest value ofM at the highest applied �eld for the
one with δ = 0.69. For δ > 0.555 we observe a clear hys-
teretic behavior, characteristic of ferrimagnetic ordering,
and a linear M(H) dependence in the high-�eld region,
characteristic of an antiferromagnetic contribution to the
net magnetization. This is in line with conclusions based
on the results of M(T ) measurements that some antifer-
romagnetic fraction exists at low temperatures for the
samples with δ = 0.59 and 0.69. For δ < 0.5, the shape
of M(H) is di�erent, indicating a competition of anti-
ferromagnetic and ferrimagnetic interactions at low tem-
peratures. The hysteretic behavior weakens for δ = 0.59
in the ferrimagnetic region (Fig. 3b). For δ = 0.555,
we observe a completely di�erent shape of the hystere-
sis loop recorded at 150 K, characteristic of domination
of ferrimagnetic interactions, with an invar e�ect and the
saturation of the magnetization for 50 kOe (Fig. 3c). The
same shape of the M(H) dependence is observed for the
already ferrimagnetic sample with δ = 0.43, in the full
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Fig. 3. The magnetic �eld dependence of magnetiza-
tion for Nd0.9Ca0.1BaCo2O5+δ with δ ≥ 0.43, mea-
sured at 5 K (a) and at 150 K (b). Evolution of
M(H) dependence with temperature for the sample
with δ = 0.555 (c).

Fig. 4. The temperature dependence of magnetization
of Nd0.9Ca0.1BaCo2O5.5 measured under ambient pres-
sure and under a hydrostatic pressure of 10 kbar in a
magnetic �eld of 100 Oe.

studied temperature range of appearance of magnetically
ordered phase, from 295 K down to 5 K. The smooth
plateau observed at about 140 K (Fig. 2a) may be at-
tributed to the second ferrimagnetic phase, which seems
to exist up to about 180 K.

Figure 4 shows that under applied hydrostatic pres-
sure up to 10 kbar it is not possible to induce an appear-
ance of antiferromagnetic phase in Nd0.9Ca0.1BaCo2O5.5.
Under a pressure of 10 kbar, one can see a sudden de-
crease in magnetization with increasing temperature at
around 300 K and a transition to the paramagnetic state
above TC. Such a decrease in TC under applied pres-
sure is in agreement with the results of dTC/dP obtained
for the samples with lower Ca2+ substitution levels, for
which the pressure coe�cient of TC was found to decrease
with increasing x and become negative at x = 0.06, con-
trary to that for undoped NdBaCo2O5.5 with positive
dTC/dP [7].

4. Conclusions

We have shown a strong variation of magnetic proper-
ties with the oxygen content changed over wide range for
Nd0.9Ca0.1BaCo2O5+δ (δ = 0.07−0.69). We have found
a reappearance of the antiferromagnetic phase, caused
by an increase of the oxygen index δ above 0.51. Under
applied hydrostatic pressure up to 10 kbar we did not
observe an appearance of the antiferromagnetic phase for
the optimally doped Nd0.9Ca0.1BaCo2O5.5.
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