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Remarks on the Hall Conductivity in Chiral Superconductors:

Weak vs. Strong Coupling Approach
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We discuss the calculations of the ac Hall conductivity for superconductors with the time reversal symmetry
breaking states. In the weak coupling theories these states show vanishing Hall response in one band models, even
though one expects otherwise on symmetry grounds. On the other hand, the strong coupling approach based on
the anti-de Sitter�conformal �eld theory correspondence leads to the non-vanishing Hall conductivity. We discuss
the possible reasons of the discrepancy. The weak coupling many orbital theory leading to the Hall conductivity
with correct temperature dependence is also brie�y presented.
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1. Introduction

Among spin singlet and spin triplet superconductors
there exist states, allowed by the group theoretical anal-
ysis which break time reversal symmetry (TRS) [1]. The
known example of such state is the triplet chiral state
with d-vector

d(k) = ∆(T )[sin(kxa)± i sin(kya)]êz, (1)

which is realized in the A-phase of 3He [2] and most
probably in strontium ruthenate (Sr2RuO4) [3, 4], even
though the singlet time reversal symmetry breaking state
∆(k) = ∆(T )[sin(kxa)+ i sin(kya)] sin(kzc) has also been
proposed [5] as providing an alternative explanation of
phase sensitive experiments [6] in Sr2RuO4. Similar
time reversal symmetry breaking singlet state ∆(k) =
∆1(T )[cos(kxa)−cos(kya)]+ i sin(kxa) sin(kya) has been
recently proposed as a possible ground state in the bi
layer silicene [7].
The above mentioned states all break time reversal

symmetry and are expected to lead to nonzero value
of the ac Hall conductivity, which can be measured by
means of e.g. the Kerr e�ect. The e�ect has indeed been
measured in strontium ruthenate with high accuracy [8].
Careful calculations, however, indicate that in one band
systems the Hall conductivity vanishes, unless one takes
e.g. collective mode response or impurity scattering into
account. The situation seem to be di�erent in the strong
coupling approach. By strong coupling we understand
here the approach based on the holographic description
of superconductivity as proposed recently [9].
In the rest of the paper we shall brie�y discuss weak

and strong coupling approaches to calculations of the Hall
conductivity of the chiral superconductors paying special
attention to the apparent discrepancy: the vanishing of
the Hall conductivity in weak coupling one band theories
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and its appearance in the holographic models (i.e. at
strong coupling). We also give a brief account of the
novel approach based on many orbital description of su-
perconductors, which leads to the Hall conductivity in
the weak coupling.

2. Absence of ac Hall conductivity in one band
weak coupling theories

As a preparation to the subsequent symmetry analysis
we start with the derivation of the Hall conductivity for-
mula which is given by the paramagnetic current jp(r)
response to the electromagnetic �eld. The diamagnetic
contribution is diagonal and does not contribute to the
Hall conductivity. The �eld is described by the position r
and time t dependent vector potential A(r, t). The mini-
mal coupling between the charged system and the electro-
magnetic �eld is given by [10] H ′ = −e

∫
drjp(r)A(r, t).

In the linear response limit the current in the system av-
eraged over the appropriate ensemble is to the linear or-
der in perturbation given by

〈jα(r, t)〉 = −e
∑
β

∫
dr′

∫ +∞

−∞
dt′

×Kα,β(r, r
′, t− t′)Aβ(r′, t′), (2)

where the retarded response function Kα,β(r, r
′, t− t′) =

− i
~Θ(t − t′)〈[jpα(r, t− t′), jpβ(r′, 0)]〉 and the symbol
〈· · · 〉 denotes averaging over the equilibrium distribution
function de�ned for the unperturbed system, i.e. at times
before the perturbation has been turned on and [. . .] is a
commutator.
In a homogeneous superconducting system with the or-

der parameter ∆ and for periodic perturbation A(r, t) =
A(k, ω)e i (kr−ωt) + c.c. the physical current J(k, ω) =
ej(k, ω) may be written in terms of the Fourier compo-
nents of A(k, ω) as

Jα(q, ω) =
∑
β

Kα,β(k, ω,∆)Aβ(k, ω), (3)

where we used the notation of Yip and Sauls [11], which
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is convenient to study symmetry properties of the sys-
tem. The kernel is de�ned as

Kα,β(k, ω,∆) = − i

~

∫ +∞

−∞
dt

∫
dre i (ωt−kr)

×Θ(t)〈[jpα(r, t), jpβ(0, 0)]〉. (4)

The symmetry analysis helps to �nd the necessary condi-
tion for the Hall e�ect to exist. First we are dealing with
tetragonal system possessing four-fold symmetry axis
along c-axis of the crystal. This leads to the constraints
on the tensor Kα,β : Kxx = Kyy and Kyx = −Kxy. To
proceed it is convenient to rewrite Eq. (3) in terms of
J± = Jx± iJy and E± = Ex± iEy in the diagonal form

J±(k, ω) = K±(k, ω,∆)E±(k, ω), (5)

where K± = Kxx ± iKyx. The necessary but not su�-
cient condition, as will be discussed later, for the appear-
ance of the Hall conductivity is that K+ 6= K−.
The additional symmetries which have to be taken into

account are the two-dimensional parity P with respect to
x- or y-axis (being the operation x → −x or y → −y),
time reversal symmetry T and causality. In the present
context the causality is the property that the response
function K(r, t− t′) is non-zero for t > t′ only. In anal-
ogy to [11] we �nd that causality, P and T symmetries
lead to the following properties of the kernel K±(k, ω,∆)
de�ned in (4) [12, 13]:

[K+(k, ω,∆)]∗ = K−(−k,−ω,∆), causality, (6)

K+(k, ω,∆) = K−(k, ω,∆
P ), parity, (7)

K+(k, ω,∆) = K−(−k, ω,∆T ), time reversal. (8)

In the above formulae symbols ∆P,T denote the states
obtained from ∆ by the corresponding symmetry oper-
ation. It is easily seen that if the system is invariant
under the time reversal operation i.e. ∆T = ∆ then in
the long-wave-length limit k = 0 one �nds K+ = K− and
no Hall conductivity in the system. On the other hand,
it follows from (parity) that the breaking of parity is nec-
essary condition for the existence of Hall conductivity.

3. AdS/CFT correspondence and chiral
superconductors with Hall response

Recently the interesting new direction of research has
been started, which proposes to use methods of the the-
ory of gravity to solve some problems of condensed mat-
ter physics [14]. Among notable examples is the metal�
superconductor phase transition [15, 16]. The correspon-
dence has been established [17] between scale invariant
conformal �eld theory (CFT) in D-dimensions without
gravity with the version of (D+1)-dimensional theory of
gravity (for a popular presentation see [18]). It is the ver-
sion of string theory with anti-de Sitter space-time (AdS
and hence AdS/CFT or gauge/gravity correspondence).
The apparent advantage of using the string theory for-
malism is that the strong coupling problems in the former
(CFT) appear as weak coupling in the later (gravity) the-
ory [19]. The temperature is brought by the black hole
in the bulk.

To describe the superconductor with s-wave order pa-
rameter the authors [9] assumed the existence of the black

hole described by ds2 = −f(r)dt2+ dr2

f(r)+r
2(dx2+dy2),

with f(r) = r2

L2 − M
r and L being the AdS radius. M and

L determine the Hawking temperature of the aforemen-

tioned black hole T = 3M1/3

4πL4/3 . The superconducting
condensate is described by the charged complex �eld
Ψ(r) in analogy to phenomenological Ginzburg�Landau
approach to the superconductivity. In the matter La-
grangian density L besides this complex �eld also the
electromagnetic �eld (Maxwell) is taken into account. In
the units with all constants taken as unity the Lagrangian
density is written as

L = −1

4
F abFab +

2|Ψ |2

L2
− |∂Ψ − iAΨ |2. (9)

Its variation over all �elds (components of the electro-
magnetic �eld and complex scalar �eld) lead to �eld
equations. The boundary solutions have the proper-
ties of an s-wave strongly coupled superconductor with
2∆(0)/kBTc ≈ 8. The solution also shows in�nite zero
frequency conductivity.

There exist proposals of the holographic superconduc-
tors with other symmetries: p, p + ip, d, d + id, etc.
For our discussion the time reversal symmetry breaking
order parameters p + ip and d + id are of special inter-
est, as they could give non-vanishing Hall conductivity
without an external magnetic �eld. The modeling of the
d-wave superconductor in the gravity theory, however, is
demanding as the correct Lagrangian of the spin 2 �eld
in the curved background is not known. One way of
obtaining the d-wave condensate is to consider charged
spin 2 �eld in the asymptotical AdS geometry. Although
the spin 2 �eld Lagrangian in curved background is not
known, the authors [20] claimed that they elaborate the
one which had limits with the Fierz�Pauli Lagrangian
in �at spacetime for neutral case and with Federbush
one, for a charged spin two �eld. The holographic model
for massive charged spin 2 �eld and the fermionic �eld
proposed by the authors [20] contains terms describing
interaction of the massive �eld with the gravity back-
ground. The obtained solution shows condensation of the
spin 2 �eld below critical temperature. At the same time
the spectral function corresponding to the fermion �eld
shows the Fermi arcs reminiscent to that seen in photoe-
mission spectroscopy of d-wave cuprate superconductors.

The generalization of the paper [20] to d + id chiral
symmetry has also been proposed [21]. These authors
used the same Lagrangian with spin 2 �eld and fermionic
�eld. Studying the underlying problem in the probe limit
(no back-reaction on the metric) they reproduced the re-
sults of the previous authors and calculated conductivity
tensor. Their calculations indicate that the frequency de-
pendent Hall conductivity is non-zero in the chiral con-
densed state. This constitutes the remarkable result in
contradiction to weak coupling theories. This di�erence
calls for detailed understanding of the result.
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4. Weak vs. strong coupling: towards resolution
of the discrepancy

In a single band situation the crucial symmetry is the
particle�hole one. As it has been discussed in [11] the
perfect particle�hole symmetry in a single band model
implies that the state of the system is identical to its
time reversed counterpart, which leads to vanishing Hall
conductivity. It turns out that in models with many
non-degenerate bands the particle-hole symmetry is not
even approximate symmetry and does not forbid exis-
tence of σxy. The microscopic calculations show [22, 23]
that even in such models the Hall conductivity vanishes
in states like (1) which have ηmy = iηmx for each orbital
m. As we have seen the non-vanishing Hall response can
be obtained in many orbital models with more general
states (10).
On the other hand, as already mentioned there are sug-

gestions [21] that holographic analogy leads to non-zero
Hall conductivity Imσxy(ω) for states of d + id charac-
ter without that property. The obvious discrepancy re-
quires the explanation. One plausible argument is that
the gauge-gravity duality takes vertex corrections into
account and breaks particle�hole symmetry due to the
presence of gravitational �eld. Another one is related to
the spontaneous orbital momentum generation in grav-
ity theory. The recent paper [24] suggests that in gravity
models the breaking of the parity induces orbital mo-
mentum. This general property of the gauge/gravity du-
ality could serve as a plausible explanation of the dis-
crepancy. The issue, however, is more intriguing because
the orbital momentum have also been predicted and cal-
culated [25, 26] in the weak coupling approach to chiral
�nite size system. The orbital momentum here are in
fact �nite size e�ects with similar temperature depen-
dence to the bulk orbital momentum appearing in many
orbital theory [27], but strongly depending on the bound-
ary conditions. The orbital momentum of the bulk sys-
tem is directly related to the Hall conductivity [28] by
the so-called dichroic sum-rule [29].
In any case the exhaustive understanding of the mech-

anism of Hall conductivity generation in holographic the-
ories is necessary before attempts to the more thorough
modeling of the superconducting systems will be started.

5. Hall response in many orbital models

Early calculations of the Kerr e�ect [30] (∝ σH(ω))
in chiral superconductors were done in the context of
px ± ipy state proposed to be realized in heavy fermion
materials [11]. These authors performed careful symme-
try analysis and their microscopic calculations show that
for the existence of the Hall e�ect in the system the TRS
and two-dimensional parity (P ) breaking is not enough
and one needs collective mode response (i.e. vertex cor-
rections) and the particle Hall asymmetry.
It seems to be a general rule that the TRS and P break-

ing is a necessary but not su�cient condition for the ap-
pearance of the Hall e�ect. For example in the normal

metals the existence of the Hall e�ect requires magnetic
�eld (external or internal) and spin�orbit coupling [31].
The same is true in the superconducting state. The Hall
conductivity vanishes in one-band models with chiral or-
der parameter (1). Technically this cancellation results
from the fact that the calculations require summation of
the response over the whole Brillouin zone of the crys-
tal and the contributions from di�erent parts of it cancel
each other [22].
At present there are two theoretical approaches which

give Hall conductivity in the time reversal symmetry
breaking state in strontium ruthenate. One of them in-
vokes scattering on impurities [32, 33] and thus may be
termed an extrinsic mechanism. Technically it relies on
the impurity induced vertex corrections to the current�
current correlation function. The other [34, 28] relies on
the many orbital description of the low energy states. It
operates in systems with the Fermi surfaces consisting of
many pieces.

Fig. 1. Typical temperature dependence of the Hall
conductivity and ∆(T )2 in the chiral three-orbital su-
perconductor at constant frequency ω.

In Fig. 1 we show the imaginary part of the frequency
dependent Hall conductivity Imσxy(ω, T ) normalized to
its zero temperature value Imσxy(ω, 0) plotted as a func-
tion of temperature in units of superconducting tran-
sition temperature T/Tc. It is worth noting that the
temperature dependence shown in the �gure is similar
to T -dependence of the Kerr e�ect [28] measured for
Sr2RuO4 [8].
In this approach the essential ingredient of the the-

ory [28, 23] is the orbital dependent spatial symmetry of
the chiral order parameter

dν(k) = [ηνx sin(kxa) + ηνy sin(kya)]êz. (10)

The symmetry properties of the order parameters in two
orbitals ν denoted by a and b read

ηay = iηbx and ηby = iηax. (11)

These symmetries guarantee the chiral character of the
superconducting state, while the relation |ηνx| 6= |ηνy |,
ν = a, b is crucial for the Hall e�ect to exist as discussed
recently [23]. This relation makes the symmetry of each
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of the orbital dependent states lower than the symme-
try of the system. On the other hand, full symmetry is
restored [23] if one takes symmetries (11) into account.
The calculation shown in �gure were done for the same
model of strontium ruthenate as described earlier [23].

6. Concluding remarks

In summary we have pointed out the discrepancy be-
tween the calculations of the Hall conductivity for chi-
ral superconductors within the standard weak coupling
(condensed matter) and strong coupling (holographic)
approaches. In the standard approach the existence of
the e�ect requires order parameter collective response or
impurity scattering while it seems to appear in a gravity
approach as a result of spontaneous momentum genera-
tion, albeit the details of the discrepancy are not clear at
present. They will be a subject of future studies.
In the Kubo linear response theory the Hall e�ect ap-

pears naturally in chiral superconductors if many hy-
bridised orbitals exist near the Fermi energy. The ob-
tained temperature dependence (shown in Fig. 1) agrees
with that measured by the Kerr e�ect [8].
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