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The e�ective capacitance between the origin and any other lattice site, in an in�nite 3D simple cubic network
consisting of identical capacitors, is evaluated in terms of the lattice Green function of the network. The perfect
case is reviewed shortly, while the perturbed case (a capacitor is removed) is studied in two cases. Numerical values
of the e�ective capacitance are presented and the asymptotic behavior is studied for the both cases.
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1. Introduction

Green function theory has a great importance in
physics and mathematics. It is strongly used in many
areas of physics such as di�usion [1], band structure [2, 3]
lattice dynamics [4�6] and statistical models of ferromag-
netism like Ising model [7], Heisenberg model [8], spheri-
cal model [9] and random walks [10�13]. One of the most
common applications of Green's function theory is the
lattice Green function (LGF), which is widely used as a
basic function in condensed matter. The LGF for cubic
lattices has been investigated by many authors [14�22],
and the so-called recurrence formulae are obtained to cal-
culate LGF for simple cubic (SC), body centered cubic
(BCC) and face centered cubic (FCC) lattices [17, 18].
Numerical values of LGF for these lattices have been
recently exactly evaluated and expressed rationally in
terms of the known value of the LGF at the origin [22].

In recent years, the LGF is successfully applied to cal-
culate resistance in many di�erent in�nite networks of
resistors [23, 24]. The computation of the resistance be-
tween two nodes in in�nite and �nite resistor networks
is a classic problem in electric circuit theory which is of
interests to physicist as well as to electrical engineering
is [25�42]. This problem was studied by many authors,
and one can see that many methods have been used.

A similar problem of the same interests to physicists
and electrical engineering in the electric circuit theory
is the calculation of e�ective capacitance in in�nite net-
works. Less attention has been paid on to study this
problem [43�46]. In this work the LGF method is used to
study both the perfect in�nite and perturbed SC network
consisting of identical capacitors. The LGF of the SC lat-
tice used in this work is related to the Green function of
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the tight-binding Hamiltonian (TBH) [12]. E�ective ca-
pacitance of perturbed SC network has been expressed
in terms of e�ective capacitance of perfect case.
The present work is organized as follows: in Sect. 2

a brief revision is carried out for the perfect in�nite SC
network. In Sect. 3 an application is carried out to cal-
culate e�ective capacitance. This section is divided into
two parts. In part 1 we revised shortly the perfect in�-
nite SC network consisting of identical capacitors, while
in part 2 we studied the perturbed SC network due to
removing a capacitor. We close this paper with analysis
and discussion to the results obtained.
Finally, we believe that the method presented here is

educational and of great importance for undergraduate
physicists and engineering students.

2. Basic de�nitions and preliminaries

In this section, we will introduce some basic prelimi-
naries for the perfect in�nite SC network. First of all, we
assume that all lattice points are speci�ed by the follow-
ing position vector:

r = n1a1 + n2a2 + n3a3, (1)

where n1, n2, n3 are integers (positive, negative or zero),
and a1,a2,a3 are independent primitive transition vec-
tors with equal magnitudes.
For such perfect in�nite SC network, the LGF was ex-

pressed rationally as [22]:

G0(3;n1, n2, n3) = r1g0 +
r2
π2g0

+ r3, (2)

where g0 is the LGF of the perfect in�nite SC lattice
at the origin. It was evaluated in the Watson classic
paper [11], where he showed that g0 = G0(0, 0, 0) =

( 2π )
2(18 + 12

√
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√
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√
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is the complete elliptic integral of the �rst kind, while
r1, r2 and r3 are rational numbers related to Du�n and
Shelly's parameter as [47]:

r1 = λ1 +
15

12
λ2; r2 = −1

2
λ2; r3 =

1

3
λ3. (3)

Various values of r1, r2 and r3 are presented in Ref. [22].
Other values can be calculated using the following recur-
rence relation:

G0(E; l + 1,m, n) +G0(E; l − 1,m, n)

+G0(E; l,m+ 1, n) +G0(E; l,m− 1, n)

+G0(E; l,m, n+ 1) +G0(E; l,m, n− 1) =

−2δl0δm0δn0 + 2EG0(E; l,m, n), (4)

where E = 3 is the energy of the in�nite SC lattice at
the band.
The asymptotic behavior of the LGF G0(3;n1, n2, n3)

is interesting to our study. One can show that as any of
n1, n2, n3 goes to in�nity, then [23] G0(3;n1, n2, n3)→ 0.

3. Application: calculation of e�ective

capacitance in SC network

3.1. Perfect case

Now, consider that the perfect in�nite SC network, dis-
cussed in Sect. 2 above, consists of identical capacitors
each of capacitance C. Figure 1 shows a section of the
in�nite network of identical capacitors. The dark spheres

Fig. 1. A section of the in�nite network of identical
capacitors. The dark spheres represent the lattice sites.

represent the lattice sites. Our aim is �nding the e�ec-
tive capacitance between the origin of the network and
any other site (n1, n2, n3). It has been shown that [46]:

C(n1, n2, n3) =
C

[G0(3; 0, 0, 0)−G0(3;n1, n2, n3)]
. (5)

Making use of Eq. (2) the e�ective capacitance can be
expressed as [48]:

C(n1, n2, n3) =
C

[σ1g0 +
σ2

π2g0
+ σ3]

. (6)

Here σ1, σ2, σ3 are rational numbers related to those de-
�ned in Eq. (3) as:

σ1 = 1− r1 = 1− λ1 −
15

12
λ2;

σ2 = −r2 =
1

2
λ2; σ3 = −r3 =

1

3
λ3. (7)

Various values of σ1, σ2, σ3 (and, of course, various val-
ues of e�ective capacitance) can be found in [48]. In this
paper we quoted some of them in Tables I and II below
for comparison reason.
To study the asymptotic behavior of the e�ective ca-

pacitance as the separation between the origin and the
site (n1, n2, n3) goes to in�nity we simply insert the fact
that G0(3;n1, n2, n3)→ 0 into Eq. (5) where we got

C(n1, n2, n3) =
C

G0(3; 0, 0, 0)
→ �nite value. (8)

3.2. Perturbed case

In this section, we consider a perturbed case in which
it is a perfect in�nite SC network but with removing the
capacitor between sites i0 and j0. Our target is �nding
the e�ective capacitance between the sites i = (ix, iy, iz)
and j = (jx, jy, jz) for the perturbed case. To do this,
we �rst de�ne the charge contribution δQi at the site ri
due to the bond (i0j0) is given by:

δQi
C

= δii0(Vi0 − Vj0) + δij0(Vj0 − Vi0) =

〈i|i0〉(〈i0| − 〈j0|)V + 〈i|j0〉(〈j0| − 〈i0|)V =

〈i|(|i0〉 − |j0〉)(〈i0| − 〈j0|)V = 〈i|L1V, (9)

where the operator L1 has the form

L1 = (|i0〉 − |j0〉)(〈i0| − 〈j0). (10)

Now, removing the bond (i0j0) from the perfect lattice
the charge Qi at the site ri is given as

(−L0V )i −
1

C
δQi =

−Qi
C

. (11)

Ohm's and Kirchho�'s laws for the perturbed lattice may
be written as

L01V =
−Q
C
, (12)

where

L01 = L0 + L1. (13)

Similarly to the perfect lattice, the LGF G01 for the per-
turbed lattice is de�ned as:

L01G01 = −1. (14)

Therefore, Eq. (12) becomes

V =
G01Q

C
. (15)

Here the operator L01 is now a sum of L0 associated with
the perfect lattice and a perturbation given by L1.
To calculate the capacitance between the sites ri and

rj , we assume the charge to be given as

Qm = Q[δmi − δmj ] for all m. (16)

As a result Eq. (15) becomes

Vk = 〈k|V =
〈k|G01Q

C
=

1

C

∑
m

〈k|G01|m〉Qm =

Q

C
[G01(k, i)−G01(k, j)]. (17)
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Thus, the capacitance between the lattice sites ri and
rj is

C01(i, j) =
C

[G01(i, i)−G01(i, j) +G01(j, j)−G01(j, i)]
. (18)

Note here that G01(i, i) 6= G01(j, j) since the transla-
tional symmetry is broken, but G01(i, j) = G01(j, i). Our
problem of �nding the capacitances reduces to the calcu-
lation of the perturbed LGF, because once we calculate
it then from Eq. (18) we �nd the perturbed capacitances
on the networks.
Instead of the above idea, in the following we write

the perturbed capacitance of the network in terms of the
perfect ones.
Using the following equation:

G01 = G0 +G0L1G0 +G0L1G0L1G0 + . . . (19)

To solve the above formula one can use the method pre-
sented by Economou [12]. Inserting Eq. (10) into the
above equation, one gets

G01(i, j) = 〈i|G01|j〉 = G0(i, j)

+
[G0(i, i0)−G0(i, j0)][G0(i0, j)−G0(j0, j)]

1− 2[G0(i0, i0)−G0(i0, j0)]
. (20)

Finally, the capacitance between ri and rj can be ob-
tained in terms of the perfect capacitances and can be
written after some simply straightforward algebra as

C01(i, j)

C
= (21)

1

1
C0(i,j)

+

[
1

C0(i,j0)
+ 1
C0(j,i0)

− 1
C0(i,i0)

− 1
C0(j,j0)

]2
4
[
1− 1

C0(i0,j0)

]
.

This is our �nal result for the perturbed capacitance be-
tween the sites ri and rj in which the bond (i0j0) is
removed. Remember here that our case (i.e., SC lattice)
i = (ix, iy, iz) and j = (jx, jy, jz).
It is important to study the asymptotic behavior of

the capacitance as the separation between i and j goes
to in�nity. In this case the above equation becomes

C01(i, j)

C
→ 1

C
C0(i,j)

=
C0(i, j)

C
→ 1

g0
. (22)

This means that the perturbed capacitance (i.e.
C01(i, j)) approaches to a perfect capacitance (i.e.
C0(i, j)). This result means that a large separation be-
tween the sites ri and rj will not be a�ected by removing
a capacitor between sites ri0 and rj0 .

4. Numerical results and discussion

In this section, numerical results are presented for
an in�nite SC network consisting of identical capaci-
tors including the perfect and both of the perturbed
cases. The capacitance between the sites i = (0, 0, 0)
and j = (jx, jy, jz) in an in�nite perfect SC lattice is cal-
culated in Asad et al. [48]. Some calculated values are
quoted in Tables I and II below for comparison reasons.
For the case of the perturbed network, one has to spec-

ify exactly the two ends of the removed bond and then

TABLE I

Calculated values for the e�ective capacitance of an in-
�nite SC lattice between the sites i = (0, 0, 0) and j =
(jx, jy, jz), for a perfect lattice (C0(i, j)/C; perturbed
lattice due to removing a capacitor between (0,0,0),
(1,0,0) and (1,0,0), (2,0,0): (C1(i, j)/C) and (C2(i, j)/C),
respectively, along the direction [100].

Site C1(i,j)
C

C2(i,j)
C

C0(i,j)
C

(0,0,0) ∞ ∞ ∞
(1,0,0) 2 2.80734375 3

(2,0,0) 2.058741 2.058741087 2.38275

(3,0,0) 1.999744508 2.166582332 2.22039

(4,0,0) 1.95978919 2.127560921 2.15107

(5,0,0) 1.934045382 2.096091576 2.113000

(6,0,0) 1.916446256 2.074195321 2.08885

(�1,0,0) 2.80734375 2.989579852 3

(�2,0,0) 2.202492142 2.371811714 2.38275

(�3,0,0) 2.047127764 2.209203787 2.22039

(�4,0,0) 1.982225632 2.139782845 2.15107

(�5,0,0) 1.947155124 2.101677630 2.113000

(�6,0,0) 1.925157797 2.070409258 2.08885

TABLE II

Calculated values for the e�ective capacitance of an in-
�nite SC lattice between the sites i = (0, 0, 0) and j =
(jx, jy, jz), for a perfect lattice (C0(i, j)/C; perturbed
lattice due to removing a capacitor between (0,0,0),
(1,0,0) and (1,0,0), (2,0,0): (C3(i, j)/C) and (C4(i, j)/C),
respectively, along the direction [111].

Site C3(i,j)
C

C4(i,j)
C

C0(i,j)
C

(0,0,0) ∞ ∞ ∞
(1,1,1) 2.146010787 2.38208889 2.3906

(2,2,2) 1.98571039 2.158864628 2.17316

(3,3,3) 1.93232867 2.092081721 2.10516

(4,4,4) 1.905828163 2.059833427 2.07224

(5,5,5) 1.890032967 2.040839542 2.05286

(6,6,6) 1.879496211 2.028280023 2.04006

(�1,�1,�1) 2.200860052 2.379997988 2.3906

(�2,�2,�2) 1.999637226 2.161759091 2.17316

(�3,�3,�3) 1.938444258 2.093667729 2.10516

(�4,�4,�4) 1.909231269 2.060778636 2.07224

(�5,�5,�5) 1.89211771 2.041455849 2.05286

(�6,�6,�6) 1.880955737 2.028719701 2.040067

the values of the perturbed capacitance can be calculated
using the calculated values of the perfect SC lattice (i.e.
C0(i, j)) and Eq. (13).
In this work we considered two cases.

First, the bond between i0 = (0, 0, 0) and j0 = (1, 0, 0) is
removed.
Second, then the removed bond is shifted and set between
i0 = (1, 0, 0) and j0 = (2, 0, 0).
We calculated the e�ective capacitance between the sites
i = (0, 0, 0) and j = (jx, jy, jz) along the directions [100]
and [111] for the above two perturbed cases. Some cal-
culated values are presented in Tables I and II below.
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In Figs. 2�3, the e�ective capacitance for the perfect
and the above two perturbed cases are plotted as a func-
tion of the site along [100] direction, while in Figs. 4�5,
the e�ective capacitance for the perfect and the above
two perturbed cases are plotted as a function of the site
along [111] direction. From these �gures, we can see that
the e�ective capacitance in the perfect network is always
greater than that in the perturbed case, and this is obvi-
ous from Eq. (13).

Fig. 2. The capacitance between i = (0, 0, 0) and j =
(jx, 0, 0) along [100] direction of the perfect (squares)
and the perturbed in�nite SC lattice (circles) as a func-
tion of jx. The ends of the removed capacitor are
i0 = (0, 0, 0) and j0 = (1, 0, 0).

Fig. 3. The capacitance between i = (0, 0, 0) and j =
(jx, 0, 0) along [100] direction of the perfect (squares)
and the perturbed in�nite SC lattice (circles) as a func-
tion of jx. The ends of the removed capacitor are shifted
and become between i0 = (1, 0, 0) and j0 = (2, 0, 0).

Finally, from Figs. 2�5 it is clear that the e�ective ca-
pacitance in the in�nite perfect SC network is symmetric.
But for the two perturbed cases the e�ective capacitance

Fig. 4. The capacitance between i = (0, 0, 0) and j =
(jx, jy, jz) along [111] direction of the perfect (squares)
and the perturbed in�nite SC lattice (circles) as a func-
tion of the site j = (jx, jy, jz). The ends of the removed
capacitor are i0 = (0, 0, 0) and j0 = (1, 0, 0).

Fig. 5. The capacitance between i = (0, 0, 0) and j =
(jx, jy, jz) along [111] direction of the perfect (squares)
and the perturbed in�nite SC lattice (circles) as a func-
tion of the site j = (jx, jy, jz). The ends of the removed
capacitor are shifted and become between i0 = (1, 0, 0)
and j0 = (2, 0, 0).

is not symmetric due to the fact that the inversion sym-
metry of the in�nite lattice has been broken.
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