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In this work we presented the new results for energy dependent cross-sections and transport coefficients as a
function of E/N for F~ ions in BF3 gas. Results were obtained by using the Monte Carlo technique for cross-section
set determined on the basis of the Nanbu theory. Monte Carlo method is applied to obtain swarm parameters at

temperature of 7" = 300 K.
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1. Introduction

F~ ions are abundant in plasmas relevant for a wide
range of applications. Knowledge of the plasma chem-
istry and behavior of the negative ions in the plasmas is
thus a key to control plasma processing devices. Addi-
tionally, the recent progress of discharge modeling and
simulation have made contributions to a deeper under-
standing of the discharge phenomena and to the opti-
mization of reactor design or operating conditions. Boron
dopant penetration in silicon is technologically achieved
by DC pulsed plasma system (PLAD) most widely ap-
plying BF3 gas [1, 2]. Uniform plasma and implantation
with normal ion incidence are the main goals in this tech-
nological process. Control over the number density of
negative ions, in such a case being F~ and BF, increase
efficiency of implantation. Modeling of such plasmas re-
quires knowledge of transport parameters of all abundant
particles [3].

In this work, we employ the Nanbu theory [4] to calcu-
late transport cross-section set for F~ ions scattering on
BF3 molecule appropriate for low energies of F~ ions. By
using Monte Carlo technique of Ristivojevi¢ and Petro-
vi¢ [5] we calculated transport parameters as a function
of E/N (E — electric field, N — gas density).

2. Calculation of the cross-section set

According to the Nanbu theory elastic and reactive
endothermic collisions are separated and treated by ac-
counting for the thermodynamic threshold energy and
branching ratio according to the Rice-Rampsperger—
Kassel (RRK) theory [4]. Within the RRK theory an
excited molecular complex is treated as excited activated
complex where the internal energy is distributed among
s equivalent vibrational modes of the complex.

Accounting for long range polarisation forces we ex-
ploited polarizability of 3.31 x 103° m? for BF3 [6]. For
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F~ + BF3 system characteristic low energy reactive chan-
nels are shown in Table.

The cross-section for exothermic reaction (EXO) form-
ing a super halogen molecular ion BF} is commonly rep-
resented by ion capture cross-section:

Oexo = B0, (1)
where oy, is the orbiting cross-section [7] and S is the
probability of a specific exothermic reaction. It is also
known that stabilization of the excited activated complex
proceeds either radiatively or collisionally [8] for reaction
EXO in Table. at room temperatures and pressures of
about 0.5 Torr (67 Pa). Similar situation appears in the
case where BF; energies from the surface sputtering of
cluster BF3 ions [9]. In Ref. [8] Herd and Babcock con-
cluded that magnitudes of collisional stabilization, radia-
tive stabilization, and unimolecular decomposition back
to initial reactants are comparable in these conditions.
Since non-associative reactions share the same collisional
complex the total probability of all selected reactions
equals 1, so one can account cross-section for exother-
mic reaction as geyxo = 0eg, Where 3 is selected to define
elastic cross-section contribution as . = (1 — 8)0en- Teo
is the elastic cross-section (EL) obtained by Nanbu the-
ory for endothermic reactions. Now one can determine
B by calculating rate coefficient for association reaction
and comparing with experimental data.

TABLE

F~-BF;3 reaction paths considered in the model and the
corresponding thermodynamic threshold energies A.

No Reaction path A [eV]
1 F, +BF, (CT) 5.6 [13]
2 F~+BF; + e~ (DET) -3.4012 [14]
3 BF; EXO) +3.58 [12]

Thermal rate coefficient for association reaction 3
(Table) is determined experimentally by Babcock and
Streit [10] by flowing afterglow technique and has a value
9.4 x 10~ cm?/molecule/s for T = 300 K. By com-
bining the relation (1) and thermal rate coefficient we
determined the probability of exothermic reaction and
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thus contributions of association cross-section (EXO) and
elastic cross-section (EL) (Fig. 1). In the low energy
limit the cross-sections are similar due to dominant po-
larization of the target. At higher energies reactive col-
lisions including the nonconservative collisions become
efficient for different possible processes.
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Fig. 1. Cross section set for F~ ions in BF3.

3. Transport parameters

The transport coefficients include the drift velocity, dif-
fusion coefficients, ionization and attachment coefficients
and chemical reaction coefficients for ions [3]. Excitation
coefficients are also measured but seldom used in model-
ing.

Swarm parameters are generally applied to plasma
modeling and simulations. At the same time, the non-
equilibrium regime in discharges is well represented un-
der a broad range of conditions by using the Boltzmann
equation with collisional operator representing only bi-
nary collisions.

In this work a Monte Carlo simulation technique for ion
transport that accounts for finite gas temperature of the
background gas particles [5] is used to calculate swarm
parameters of F~ ions in gas for temperature 7" = 300 K.

The critical review of experimentally obtained trans-
port properties of gaseous halogen ions is presented
in [11].

In Fig. 2 we show characteristic energies (diffusion co-
efficient normalized by mobility D/K in units €V) longi-
tudinal (L) and transverse (T) to the direction of electric
field. We also show the mean energy, which cannot be
directly measured in experiments but a map of mean en-
ergy versus /N may be used directly to provide the data
in fluid models especially when local field approximation
fails. As visible in the figure the energy increases from
10 Td.

The mobility K of an ion is the quantity defined as
the velocity attained by an ion moving through a gas
under unit electric field. One often exploits the reduced
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Fig. 2. Mean and characteristic energy of F~ ions in
BF3 as a function of E/N.
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Fig. 3. Reduced mobility of F~ ions in BF3 as a func-
tion of E/N.
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Fig. 4. The diffusion coefficients for F~ ions in BF3
gas as a function of E/N at T'= 300 K.
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or standard mobility defined as:
Ud
KO - N() NE> (2)
where vy is the drift velocity of the ion, IV is the gas
density at elevated temperature T', F is the electric field.

In Fig. 3 we show the results of Monte Carlo simu-
lation for reduced mobility as a function of E/N. Non-
conservative collisions of F~ ions producing BF ions are
only slightly modifying mobility curve obtained for two
values of parameter (3.

Longitudinal and transverse bulk and flux diffusion co-
efficients for F~ ions in BF3 as a function of F/N are
shown in Fig. 4. Note that the difference between flux
and bulk values of diffusion coefficients which have the
same origin have the same initial value as drift veloci-
ties. There are no published experimental data for the
longitudinal and transverse diffusion coefficients of F~
in BF;.

4. Conclusion

In this paper we show predictions for the low energy
cross-sections and transport coefficients of negative F~
ions in BF3 which did not exist in literature.

Monte Carlo technique was applied to carry out cal-
culations of the mean energy, drift velocity and diffusion
coefficients as a function of reduced electric field in DC
electric fields.

In Monte Carlo technique used in presented study col-
lision frequency in case of thermal collisions of a test
ion particle is not calculated by Monte Carlo integration
technique [15] but by using piecewise calculation [16].
The piecewise calculation is based on assumption that
most cross-sections are defined numerically at limited
number of points with linear interpolation for mid points.

The cross-section set have been determined by using a
simple theory and transport data for gas BF3, which is
technologically very important. There results are a good
base for modeling, but it could be further improved by
adding a data base of the measured values of transport
coefficients and then perform the analysis again.
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