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Transport Parameters of F− Ions in BF3
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In this work we presented the new results for energy dependent cross-sections and transport coe�cients as a

function of E/N for F− ions in BF3 gas. Results were obtained by using the Monte Carlo technique for cross-section
set determined on the basis of the Nanbu theory. Monte Carlo method is applied to obtain swarm parameters at
temperature of T = 300 K.
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1. Introduction

F− ions are abundant in plasmas relevant for a wide
range of applications. Knowledge of the plasma chem-
istry and behavior of the negative ions in the plasmas is
thus a key to control plasma processing devices. Addi-
tionally, the recent progress of discharge modeling and
simulation have made contributions to a deeper under-
standing of the discharge phenomena and to the opti-
mization of reactor design or operating conditions. Boron
dopant penetration in silicon is technologically achieved
by DC pulsed plasma system (PLAD) most widely ap-
plying BF3 gas [1, 2]. Uniform plasma and implantation
with normal ion incidence are the main goals in this tech-
nological process. Control over the number density of
negative ions, in such a case being F− and BF−

4 , increase
e�ciency of implantation. Modeling of such plasmas re-
quires knowledge of transport parameters of all abundant
particles [3].
In this work, we employ the Nanbu theory [4] to calcu-

late transport cross-section set for F− ions scattering on
BF3 molecule appropriate for low energies of F− ions. By
using Monte Carlo technique of Ristivojevi¢ and Petro-
vi¢ [5] we calculated transport parameters as a function
of E/N (E � electric �eld, N � gas density).

2. Calculation of the cross-section set

According to the Nanbu theory elastic and reactive
endothermic collisions are separated and treated by ac-
counting for the thermodynamic threshold energy and
branching ratio according to the Rice�Rampsperger�
Kassel (RRK) theory [4]. Within the RRK theory an
excited molecular complex is treated as excited activated
complex where the internal energy is distributed among
s equivalent vibrational modes of the complex.
Accounting for long range polarisation forces we ex-

ploited polarizability of 3.31 × 1030 m3 for BF3 [6]. For
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F− + BF3 system characteristic low energy reactive chan-
nels are shown in Table.
The cross-section for exothermic reaction (EXO) form-

ing a super halogen molecular ion BF−
4 is commonly rep-

resented by ion capture cross-section:

σexo = βσL, (1)

where σL is the orbiting cross-section [7] and β is the
probability of a speci�c exothermic reaction. It is also
known that stabilization of the excited activated complex
proceeds either radiatively or collisionally [8] for reaction
EXO in Table. at room temperatures and pressures of
about 0.5 Torr (67 Pa). Similar situation appears in the
case where BF−

4 energies from the surface sputtering of
cluster BF3 ions [9]. In Ref. [8] Herd and Babcock con-
cluded that magnitudes of collisional stabilization, radia-
tive stabilization, and unimolecular decomposition back
to initial reactants are comparable in these conditions.
Since non-associative reactions share the same collisional
complex the total probability of all selected reactions
equals 1, so one can account cross-section for exother-
mic reaction as σexo = βσe0, where β is selected to de�ne
elastic cross-section contribution as σe = (1− β)σe0. σe0
is the elastic cross-section (EL) obtained by Nanbu the-
ory for endothermic reactions. Now one can determine
β by calculating rate coe�cient for association reaction
and comparing with experimental data.

TABLE

F−�BF3 reaction paths considered in the model and the
corresponding thermodynamic threshold energies ∆.

No Reaction path ∆ [eV]
1 F−

2 +BF2 (CT) �5.6 [13]
2 F−+BF3 + e− (DET) �3.4012 [14]
3 BF−

4 EXO) +3.58 [12]

Thermal rate coe�cient for association reaction 3
(Table) is determined experimentally by Babcock and
Streit [10] by �owing afterglow technique and has a value
9.4 × 10−11 cm3/molecule/s for T = 300 K. By com-
bining the relation (1) and thermal rate coe�cient we
determined the probability of exothermic reaction and
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thus contributions of association cross-section (EXO) and
elastic cross-section (EL) (Fig. 1). In the low energy
limit the cross-sections are similar due to dominant po-
larization of the target. At higher energies reactive col-
lisions including the nonconservative collisions become
e�cient for di�erent possible processes.

Fig. 1. Cross section set for F− ions in BF3.

3. Transport parameters

The transport coe�cients include the drift velocity, dif-
fusion coe�cients, ionization and attachment coe�cients
and chemical reaction coe�cients for ions [3]. Excitation
coe�cients are also measured but seldom used in model-
ing.
Swarm parameters are generally applied to plasma

modeling and simulations. At the same time, the non-
equilibrium regime in discharges is well represented un-
der a broad range of conditions by using the Boltzmann
equation with collisional operator representing only bi-
nary collisions.
In this work a Monte Carlo simulation technique for ion

transport that accounts for �nite gas temperature of the
background gas particles [5] is used to calculate swarm
parameters of F− ions in gas for temperature T = 300 K.
The critical review of experimentally obtained trans-

port properties of gaseous halogen ions is presented
in [11].
In Fig. 2 we show characteristic energies (di�usion co-

e�cient normalized by mobility D/K in units eV) longi-
tudinal (L) and transverse (T) to the direction of electric
�eld. We also show the mean energy, which cannot be
directly measured in experiments but a map of mean en-
ergy versus E/N may be used directly to provide the data
in �uid models especially when local �eld approximation
fails. As visible in the �gure the energy increases from
10 Td.
The mobility K of an ion is the quantity de�ned as

the velocity attained by an ion moving through a gas
under unit electric �eld. One often exploits the reduced

Fig. 2. Mean and characteristic energy of F− ions in
BF3 as a function of E/N .

Fig. 3. Reduced mobility of F− ions in BF3 as a func-
tion of E/N .

Fig. 4. The di�usion coe�cients for F− ions in BF3

gas as a function of E/N at T = 300 K.
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or standard mobility de�ned as:

K0 =
vd
N0

NE, (2)

where vd is the drift velocity of the ion, N is the gas
density at elevated temperature T , E is the electric �eld.
In Fig. 3 we show the results of Monte Carlo simu-

lation for reduced mobility as a function of E/N . Non-
conservative collisions of F− ions producing BF−

4 ions are
only slightly modifying mobility curve obtained for two
values of parameter β.
Longitudinal and transverse bulk and �ux di�usion co-

e�cients for F− ions in BF3 as a function of E/N are
shown in Fig. 4. Note that the di�erence between �ux
and bulk values of di�usion coe�cients which have the
same origin have the same initial value as drift veloci-
ties. There are no published experimental data for the
longitudinal and transverse di�usion coe�cients of F−

in BF3.

4. Conclusion

In this paper we show predictions for the low energy
cross-sections and transport coe�cients of negative F−

ions in BF3 which did not exist in literature.
Monte Carlo technique was applied to carry out cal-

culations of the mean energy, drift velocity and di�usion
coe�cients as a function of reduced electric �eld in DC
electric �elds.
In Monte Carlo technique used in presented study col-

lision frequency in case of thermal collisions of a test
ion particle is not calculated by Monte Carlo integration
technique [15] but by using piecewise calculation [16].
The piecewise calculation is based on assumption that
most cross-sections are de�ned numerically at limited
number of points with linear interpolation for mid points.
The cross-section set have been determined by using a

simple theory and transport data for gas BF3, which is
technologically very important. There results are a good
base for modeling, but it could be further improved by
adding a data base of the measured values of transport
coe�cients and then perform the analysis again.
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