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Transmittance magneto-optical responses of one-dimensional magnetophotonic heterostructures are investi-
gated using 4 by 4 transfer matrix method. It is shown that in a simple magnetophotonic heterostructure consti-
tuted of two di�erent periodic structures, the enhanced Faraday rotation associated with high transmittance at a
desired wavelength can be realized with specifying optimized repetition numbers and adjusting the thicknesses of
the substructure layers. However, the unique features of multichanneled enhanced Faraday rotations are obtained
for di�erent con�gurations of a multiple magnetophotonic heterostructure and the most suitable one to simulta-
neously support the both resonance wavelengths of 1.3 µm and 1.55 µm are introduced. These wavelengths are
currently used in telecommunication systems. Then the obtained results may have potential applications in design-
ing the multi-function single magneto-optical devices such as multiple Faraday rotators and wavelength division
multiplexing systems.
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1. Introduction

Photonic crystals (PCs) are periodic dielectric struc-
tures that are proposed to control and manipulate the
propagation of electromagnetic (EM) waves [1, 2]. After
the pioneering papers of Yablonovitch and John in 1987
[3, 4] exponential growth of theoretical and experimental
researches on PCs have been started and their potential
applications continue to be examined. Appearing of the
photonic band gap (PBG) where the EM waves with fre-
quencies within the gap cannot propagate through the
structure, is the main characteristic of the PCs. Peri-
odic one-dimensional PCs (1D-PCs) are composed of an
ordered sequence of two di�erent dielectric slabs. One
of the most interesting aspects of 1D-PCs is related to
presence of a defect layer in the periodic structure which
gives rises to localization of EM wave and creates a res-
onance transmittance within the gap, which allows the
corresponding EM wave with previously forbidden wave-
length to propagate inside the structure [4�6].
It has been revealed that the localization of EM waves

appears not only in the defective structures, but also in
quasiperiodic systems such as Fibonacci [7] and Thue�
Morse [8, 9] multilayers. Moreover, a kind of the partic-
ularly attractive disordered structures are heterostruc-
tures which are formed by combination of two or more
periodic 1D-PCs with di�erent layer thicknesses or dif-
ferent constituent materials. Distinct PCs have di�erent
optical properties, then heterostructures can show many
appealing characteristics. For example, extension of the
PBG, criterion of omnidirectional re�ections and design-
ing of polarization bandpass �lters have been studied in
number of literatures [10�13].
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On the other hand, in past several years, consider-
able attentions have been paid to magnetophotonic crys-
tals (MPCs) due to their capability of providing unique
magneto-optical (MO) properties, such as their drasti-
cally enhanced Faraday rotations (FRs) [14�17]. The
MPCs are formed when the constitutive materials of the
PCs are magnetic, or even only a defect layer in the PC
is magnetic [16]. The structures with high MO responses
are interested to use in many MO devices, such as MO
isolators, MO modulators, MO sensors, and MO circula-
tors. Recently, utilizing multicavity MPCs to create mul-
tiple passbands inside the PBG, have opened a new win-
dow to engineer multi-function single MO-devices which
show simultaneously high transmittance and enhanced
FRs [18�20].

In this paper, we discuss magnetophotonic heterostruc-
tures constituted of dielectric and magnetic multilayers.
The MO responses of simple and multiple heterostruc-
tures are studied through 4 by 4 transfer matrix method.
We show that the enhanced FRs at desire resonance
wavelengths in a wide PBG would be obtained consider-
ing special design of heterostructures. Such a capability
may have potential applications in multi-function single
MO-devices.

The outline of our study is as follows: Sect. 2 gives
the brief description of 4 by 4 transfer matrix method.
In Sect. 3 we have presented our study in two steps.
First, for a simple heterostructure consists of two peri-
odic MPCs with di�erent design wavelengths, it is shown
that the resonance transmittance would occur at spe-
cial wavelengths. Then for a limited case of simple het-
erostructure, the approximated relations to describe the
transmittance and FR at the resonance wavelengths are
derived analytically. Furthermore, the spectral proper-
ties of the simple heterostructure and its substructures
are investigated numerically. Second, for di�erent con�g-
urations of a multiple heterostructure constituted of four
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periodic MPCs as substructures, the transmittance and
FR spectra are studied. Finally, in Sect. 4 the obtained
results are summarized.

2. 4 by 4 transfer matrix formalism

Consider the EM wave propagation through a periodic
MPC structure P1 = {A,B}m, where A and B are dielec-
tric and magnetic layers with refractive indexes of nA and
nB and optical thicknesses of nAdA = nBdB = λ(1)/4.
In this representation, m denotes the repetition number
and λ(1) is design wavelength. It is considered that the
whole structure is surrounded by air. To calculate MO
responses of magnetic multilayer structures, we use 4 by
4 transfer matrix method and follow the formalism which
have been developed by Vi²¬ovský [21]. In a medium uni-
formly magnetized in z-axis, the dielectric permittivity of
magnetic layer ε̂B has the following form:

ε̂B =

 εxx εxy 0

−εxy εxx 0

0 0 εzz

 , (1)

where the nondiagonal term εxy corresponds to the mag-
netic gyration. In linear regime, εxy is proportional to
the magnetization of the medium and can be tuned by
external magnetic �eld Hext. The dielectric layer is de-
termined by a diagonal tensor ε̂A as

ε̂A =

 εA 0 0

0 εA 0

0 0 εA

 . (2)

The refractive indexes of magnetic and dielectric layers
can be de�ned as nB =

√
εxx and nA =

√
εA. For a

J-layered MPC structure the total transfer matrix for
noninteracting left- and right-circularly polarized EM
waves

M =
[
D(0)

]−1 J∏
j=1

S(j)D(j+1) (3)

relates the EM �eld amplitudes of incident and trans-
mitted waves through the characteristic (S) and dynamic
(D) matrices. For the case of normal incidence and polar-
ization parallel to multilayer surfaces, the block diagonal
S and D matrices are given by

D(j) =


1 1 0 0

N
(j)
+ −N (j)

+ 0 0

0 0 1 1

0 0 N
(j)
− −N (j)

−

 , (4)

S(j) = (5)
cosβ

(j)
+

i

N
(j)
+

sinβ
(j)
+ 0 0

iN
(j)
+ sinβ

(j)
+ cosβ

(j)
+ 0 0

0 0 cosβ
(j)
−

i

N
(j)
−

sinβ
(j)
−

0 0 iN
(j)
− sinβ

(j)
− cosβ

(j)
−

.

Here N
(j)
± =

√
ε
(j)
xx ± iε

(j)
xy represents the complex re-

fractive index for right- and left-circularly polarized EM

waves in the j-th layer. β
(j)
± = (2π/λ)N

(j)
± d(j) in which

d(j) is the thickness of the j-th layer and λ is the wave-
length of incident wave in the vacuum. For a dielectric

layer N
(j)
+ = N

(j)
− and the characteristic and dynamic

matrixes consist of identical 2 by 2 sub-blocks. In terms
of M matrix components, the transmittance T (λ) and
Faraday rotation ΘF(λ) of the MPC can be expressed as
follows:

T (λ) =
1

2

(
|M11|−2

+ |M33|−2
)
, (6)

ΘF(λ) = −1

2
arg

(
M11

M33

)
. (7)

3. MO responses of magnetophonic

heterostructures

3.1. A simple magnetophotonic heterostructure

In order to study the MO responses of magnetopho-
tonic heterostructures, at �rst, we introduce a simple
heterostructure with two substructures. De�ning the
left substructure as PL = {A1, B1}m1 with the optical
thicknesses of nAdA1

= nBdB1
= λL/4 and the right

substructure as PR = {B2, A2}m2 with the optical thick-
nesses of nAdA2

= nBdB2
= λR/4, we construct a simple-

-heterostructure SH as

SH = PLUPR = {A1, B1}m1{B2, A2}m2

= {A1, B1, . . . , A1, B1︸ ︷︷ ︸
m1 pair of A1,B1

|B2, A2, . . . , B2, A2︸ ︷︷ ︸
m2 pair of B2,A2

}, (8)

in which λL and λR are the design wavelengths of left and
right substructures, respectively. The SH has 2(m1+m2)
layers and is surrounded by air. The left and right sub-
structures consist of identical dielectric (A) and magnetic
materials (B), but with di�erent thicknesses. We uti-
lize SiO2 and cerium substituted yttrium iron garnet (
Ce:YIG) as the dielectric and magnetic layers. Ce:YIG
is used because it turns out to be one of the most attrac-
tive materials for practical applications due to low ab-
sorption in infrared region and large MO responses. The
dielectric permittivity of SiO2 is εA = 2.19 and the mag-
netic Ce:YIG layer has dielectric tensor elements εxx =
4.884 and εxy = 0.009i at telecommunication wavelength
λ = 1.55 µm [14]. As it is understood from the dielectric
constants, in the infrared region of electromagnetic spec-
trum these materials can be considered lossless, with a
very good approximation. The corresponding refractive
indexes are nA = nSiO2

= 1.48 and nB = nCe:YIG = 2.21.
The speci�c FR of a single layer Ce:YIG can be calculated
by θF = π

λ∆n ∼= −0.47 deg /µm at λ = 1.55 µm [22].
Here ∆n is the di�erence of the refractive indexes of left-
and right- circularly polarized EM waves in the magnetic
layer.
According to Eq. (3), the total transfer matrix for the

heterostructure SH can be represented by Eq. (9):
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M1 =

{[
D(0)

]−1

S(A1)S(B1) . . . S(A1)S(B1)

×D(2m1+1)|
[
D(2m1+1)

]−1

S(B2)S(A1)

. . . S(B2)S(A1)
[
D(2(m1+m2)+1)

]−1
}
. (9)

Looking the center of M1, it is obvious that at the inter-

face of the left and right substructures

D(2m1+1)
[
D(2m1+1)

]−1

= I, (10)

which I is the unit matrix. Then the central part of the
M1 is simpli�ed as the product of S(B1) and S(B2), as
shown in Eq. (11):

G1 = S(B1)S(B2) =


cos(βB1

+ + βB2
+ ) i

N+
sin(βB1

+ + βB2
+ ) 0 0

iN+ sin(βB1
+ + βB2

+ ) cos(βB1
+ + βB2

+ ) 0 0

0 0 cos(βB1
− + βB2

− ) i
N−

sin(βB1
− + βB2

− )

0 0 iN− sin(βB1
− + βB2

− ) cos(βB1
− + βB2

− )

 . (11)

The argument of the trigonometric functions can be writ-
ten as

βB1
± + βB2

± =
2π

λ
NB

± (dB1
+ dB2

)

=
π

2

NB
±
nB

(
λL + λR

λ

)
. (12)

At this step, it is illustrative to study the case that
εxy = 0; which may be obtained by setting the exter-
nal magnetic �eld Hext to zero. Then for all magnetic
layers NB

+ = NB
− = nB and the aforementioned equation

will be reduced to

βB1
± + βB2

± =
π

2

(
λL + λR

λ

)
. (13)

We set the wavelength of incident EM wave as

λq = (λL + λR) /2q, (14)

where q is an integer. We call this wavelength the res-
onance wavelength of the heterostructure. So, the argu-
ment of trigonometric functions of Eq. (11) will be qπ
and we have

G1 = (−1)qI. (15)

Considering Eq. (9), again the central part of M1 is sim-
pli�ed to G2 = (−1)qS(A1)S(A2). Product of the charac-
teristic matrices of S(A1) and S(A2) under the condition
of Eq. (14) gives a unit matrix multiplied by (−1)q. Re-
peating this procedure, it can be concluded that when
the left and right substructures of SH have identical rep-
etition numbers m1 = m2 = m, the total transfer matrix
for the heterostructure SH is

M1 = (−1)2mqI. (16)

Using Eqs. (6, 7), the transmittance and FR of the SH
are

T = 1, ΘF = 0. (17)

As a result, for the case of εxy = 0, EM waves with
the resonant wavelengths of λq = (λL + λR)/2q would
be perfectly transmitted through the heterostructure SH
without any FR.

Now we come back to the general case εxy 6= 0. For
most magnetic materials the nondiagonal component of

dielectric permittivity tensor is much smaller than the di-
agonal one. For Ce:YIG we can consider εxy = ig, then
g/εxx will be of the order of 10−3 and Eq. (12) can be
approximated by

βB1
± + βB2

± ≈ π

2
(1∓ δ)

(
λL + λR

λ

)
, δ =

g

2εxx
� 1.

(18)

Setting the wavelength of incident wave as Eq. (14), we
have

βB1
± + βB2

± ≈ qπ(1∓ δ). (19)

The simpli�cation of G1 (Eq. (11)) can be made through
the �rst order approximation of trigonometric functions
regarding the resonant wavelengths i.e. Eq. (19):

G1 = S(B1)S(B2) = (−1)q

×


1 − i

NB
+

(qπδ) 0 0

− iNB
+ (qπδ) 1 0 0

0 0 1 i
NB

−
(qπδ)

0 0 iNB
− (qπδ) 1

.
(20)

Comparing with Eq. (15), it can be seen that the nondiag-
onal components in Eq. (20) originate from the magnetic
gyration g.

Taking into account that for dielectric layers A1

and A2,

βA1
+ = βA1

− = βA1 = qπ

(
λL

λL + λR

)
, (21)

βA2
+ = βA2

− = βA2 = qπ

(
λR

λL + λR

)
. (22)

Then βA1 + βA2 = qπ and we de�ne the parameter ∆βA

as

∆βA = βA2 − βA1 = qπ

(
∆λ

λL + λR

)
,

∆λ = λR − λL. (23)

Considering the central part of M1 we can calculate G2

matrix as
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G2 = S(A1)G1S
(A2) = (−1)q


G11

2 G12
2 0 0

G21
2 G22

2 0 0

0 0 G33
2 G34

2

0 0 G43
2 G44

2

 ,
(24)

where

G11
2 = Z+, G12

2 = U+, G21
2 = V+, G22

2 = Y+,

G33
2 = Z−, G34

2 = U−, G43
2 = V−, G44

2 = Y−,

(25)

in which

Z± = (−1)q +
qπδ

2
sin(∆βA)

(
∓
NB

±
nA
± nA
NB

±

)
,

Y± = (−1)q +
qπδ

2
sin(∆βA)

(
±
NB

±
nA
∓ nA
NB

±

)
,

U± =
iqπδ

2

[
cos(∆βA)

(
±
NB

±
n2A
∓ 1

NB
±

)
∓ (−1)q

(
NB

±
n2A

+
1

NB
±

)]
,

V± =
iqπδ

2

[
cos(∆βA)

(
± n2A
NB

±
∓NB

±

)
∓ (−1)q

(
n2A
NB

±
+NB

±

)]
. (26)

For the heterostructure SH with m1 = m2 = 1 the total
transfer matrix can be written as

M1 |m1=m2=1 =
[
D(air)

]−1

G2D
(air). (27)

After a straightforward derivation, the key components
M11

1 and M33
1 can be obtained as

M11
1 =

(−1)q

2

(
2(−1)q +

iqπδ

2
γ+

)
,

M33
1 =

(−1)q

2

(
2(−1)q +

iqπδ

2
γ−

)
, (28)

where

γ± =
±1

NB
±
σ±, (29)

with

σ± =
[(
NB

±
)2

+ n2A

](
1 +

1

n2A

)
×
(
cos(∆βA) + (−1)q

)
− 2 cos(∆βA). (30)

It is clear that the γ± is a real parameter with the order
of unit, then δγ± � 1 and |M11

1 |−2 and |M33
1 |−2 can be

approximated as∣∣M11
1

∣∣−2 ≈ 1−
(
qπδ

4
γ+

)2

,

∣∣M33
1

∣∣−2 ≈ 1−
(
qπδ

4
γ−

)2

. (31)

Finally, the transmittance and FR of the SH1 =
{A1, B1}1{B2, A2}1 is

T ≈ 1− (qπδ)2

32

(
γ2+ + γ2−

)
,

ΘF ≈ −
(−1)qqπδ

8
(γ− − γ+) . (32)

Comparing the achieved transmittance and FR with the
case of nonmagnetic heterostructure i.e. Eq. (17), we see
that the transmittance at resonant wavelength of het-
erostructure has been slightly violated from the perfect
value and a small FR has appeared. The slight violations
of transmittance and the values of FR are dependent on
the δ by second and �rst power orders, respectively. How-
ever, the parameter δ (= g/2εxx) is directly related to the
magnetic gyration g, while the γ± is very weakly a�ected
by small variations of the g (see Eq. (29)). Consequently,
knowing that δ < 1, the slight decrease of the g will cause
the faster increase of FR value and slower diminishing of
perfect transmittance violations. From Eq. (32), it can
be clearly seen that for the case g → 0, the same re-
sults of nonmagnetic heterostructure will be obtained,
i.e. Eq. (17).

Fig. 1. Transmittance and Faraday rotation for the
SiO2/Ce:YIG multilayers as the heterostructure of
SH = {A1, B1}m{B2, A2}m versus the repetition num-
ber m at resonance wavelength λ1 = 1.55 µm. Here the
design wavelengths for left and right substructures are
λL = 1.45 µm and λR = 1.65 µm.

Actually, �nding the explicit analytical relations to ex-
press the transmittance and FR at heterostructure reso-
nant wavelength is not straightforward for higher repeti-
tion numbers. Hence, we have calculated them numeri-
cally using the total transfer matrix of Eq. (9) and �nal
relations of Eqs. (6, 7). Figure 1 depicts the transmit-
tance and FR of the SH versus the repetition number m.
These results are obtained regarding the λL = 1.45 µm,
λR = 1.65 µm and q = 1, which corresponds to the het-
erostructure resonant wavelength of λ1 = 1.55 µm. From
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the �gure, the trade-o� relationship between the trans-
mittance and FR can be seen clearly; for higher repetition
numbers, the more enhanced FRs would be obtained with
the cost of transmittance. It can be deduced that the
heterostructures with repetition numbers of m = 7 and
m = 8 are appropriate to provide simultaneously high
transmittance and enhanced FR. The heterostructure SH
shows the FR of ΘF = −14.39 deg and ΘF = −27.35 deg
with the transmittance of T = 0.94 and T = 0.79, re-
spectively for m = 7 and m = 8. These FRs are more
than 12 and 20 times larger than the corresponding FRs
of a single layer Ce:YIG with a thickness equal to sum of
all magnetic layer thicknesses in the SH with m = 7 and
m = 8, respectively.

Fig. 2. Transmittance and Faraday rotation spectra
for the SiO2/Ce:YIG multilayers with the structure as
(a) the left substructure PL = {A1, B1}8, (b) the right
substructure PR = {B2, A2}8, and (c,d) the heterostruc-
ture SH = PLUPR. Here the design wavelength for PL

and PR are λL = 1.45 µm and λR = 1.65 µm, respec-
tively.

In order to investigate the MO responses of the con-
sidered structures, we have calculated the transmittance
and FR spectra of the SH with optimum repetition num-
ber of m = 8, in the wavelength range of 1�2.2 µm.
These spectra for the separated substructures PL and PR

are shown in Fig. 2a and b, respectively. For substruc-
ture PL the PBG is set between 1.25 µm and 1.7 µm
in which the design wavelength of 1.45 µm is located at
the PBG. While the PBG of the substructure PR is be-
tween 1.43 µm and 1.94 µm, which includes the design
wavelength of 1.65 µm. For both substructures, the mag-
nitude of FR has local maxima at the PBG edges that
corresponded to the maxima in the transmittance spec-

tra. The maximum angle of the FR for each substructure
is at the long-wavelength edge of the PBG, which is a
clear manifestation of the optical Borrmann e�ect in the
arti�cially strati�ed media [23].
Figure 2c shows the transmittance spectrum of the het-

erostructure SH. The PBG of the SH covers the wave-
length from 1.25 µm to 1.94 µm, which is wider than the
PBG of substructures PL and PR. Indeed, the PBG of SH
is made through overlapping the PBGs of substructures
PL and PR, that is, the short-wavelength edge of het-
erostructure PBG is the �rst edge of the PBG of PL, while
the long-wavelength edge of heterostructure PBG is the
end edge of the PBG of PR. The resonance transmittance
of T = 0.79 appears at λ1 = (λL + λR)/2 = 1.55 µm.
Figure 2d depicts the FR spectrum of the heterostruc-

ture SH. As can be seen, a sharp peak of FR magnitude
(ΘF = −27.35 deg) occurs at the resonance wavelength of
heterostructure. However, it is worthy to note that there
is not any resonant transmittance and enhanced FR for
design wavelengths of λL = 1.45 µm and λR = 1.65 µm.
While for symmetric microcavity structures the reso-
nance transmittance with enhanced FR does occur at
design wavelength [16], whereas for the magnetophotonic
heterostructure, transmittance and enhanced FR would
appear at the resonance wavelength of the heterostruc-
ture, instead of design wavelengths of the left or right
substructures.

3.2. A multiple magnetophotonic heterostructure

To continue the study, we are interested in investiga-
tion of the MO responses of multiple heterostructures
consisting SiO2/Ce:YIG bilayers as

MH = P1UP2UP3UP4 = {A1, B1}m1{B2, A2}m2

× {A3, B3}m3{B4, A4}m4 . (33)

In general, such a heterostructure consists of four peri-
odic structures where each periodic structure P` is char-
acterized by the design wavelength of λ(`) and the repe-
tition number of m`. To obtain a symmetric heterostruc-
ture, we suppose that all periodic structures have iden-
tical optimum repetition number of m = 7. The gen-
eral multiple heterostructure would show distinct MO re-
sponses with respect to the di�erent design wavelengths.
Hence we have categorized the derived heterostructures
of MH as follows:

1) MH1 = MH, in which

λ(1) = λ(2) = 1.3 µm, λ(3) = λ(4) = 1.8 µm,

2) MH2 = MH, in which

λ(1) = λ(4) = 1.3 µm, λ(2) = λ(3) = 1.8 µm,

3) MH3 = MH, in which

λ(1) = λ(4) = 1.8 µm, λ(2) = λ(3) = 1.3 µm,

4) MH4 = MH, in which

λ(1) = λ(3) = 1.3 µm, λ(2) = λ(4) = 1.8 µm.

The heterostructure MH1 can be considered as the union
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of the two symmetric microcavity structures as

MH1 = MS1 ∪MS3 = {A1, B1}7{B1, A1}7

∪ {A3, B3}7{B3, A3}7, (34)

with the design wavelength of λ(1) = 1.3 µm for left mi-
crocavity structure and λ(3) = 1.8 µm for the right one.
According to Eq. (14), it can be realized that for these mi-
crocavity structures the resonance wavelengths are equiv-
alent with the corresponding design wavelengths.

Fig. 3. Transmittance and Faraday rotation spec-
tra for the SiO2/Ce:YIG multilayers with the struc-
ture as (a,b) the microcavity structure MS1 =
{A1, B1}7{B1, A1}7, (c, d) the microcavity structure
MS2 = {A2, B2}7{B2, A2}7. Here the design wave-
length for MS1 and MS2 are λ(1) = 1.3 µm and λ(2) =
1.8 µm, respectively.

The transmittance and FR spectra of the separated mi-
crocavity structures are represented in Fig. 3. As can be
seen from the transmittance spectra in Fig. 3a, the PBG
of MS1 is located between 1.1 µm and 1.58 µm with a
resonance transmittance at 1.3 µm. For MS3 (Fig. 3c)
the PBG is laid from 1.54 µm to 2.14 µm and the reso-
nance transmittance is at 1.8 µm. Looking the FR spec-
tra, the enhanced FRs at resonance modes are seen for
MS1 and MS3. These features of the microcavity struc-
tures was expected as reported in the number of former
research works [15, 16].
Figure 4 shows the transmittance and FR spectra of

the MH1. The wide PBG with about 1 µm width is
constructed from 1.1 µm to 2.14 µm with three reso-
nance wavelengths at 1.3 µm, 1.55 µm, and 1.8 µm, which
are associated with the sharp peaks of FR magnitudes.
These corner resonance modes come from the left and
right microcavity structures resonance modes, while the
central one is related to the heterostructure resonance

Fig. 4. Transmittance and Faraday rotation spectra
for heterostructure MH1 = MS1UMS2. Here the MS1

and MS2 are the same as in Fig. 3.

Fig. 5. Transmittance and Faraday rota-
tion spectra for heterostructure MH2 =
{A1, B1}7{B2, A2}7{A3, B3}7{B4, A4}7. Here the
design wavelengths are λ(1) = λ(4) = 1.3 µm,
λ(2) = λ(3) = 1.8 µm. The resonance transmittances
are realized at (1) 1.121 µm, (2) 1.156 µm, (3) 1.209 µm,
(4) 1.253 µm, (5) 1.318 µm, (6) 1.367 µm, (7) 1.445 µm,
(8) 1.483 µm, (9) 1.55 µm and (10) 1.8 µm wavelengths.

mode described by Eq. (14). Comparing these trans-
mittance modes and their corresponding FRs, it can be
said that the highest transmittance is associated with
the lowest FR and the lowest transmittance is associ-
ated with the highest FR. In other words, the trade-o�
relationship between the transmittance and FR of res-
onance modes are clearly manifested. The wavelengths
1.3 µm and 1.55 µm are currently used in telecommunica-
tion systems. So that, such a heterostructure would have
the potential applications in designing the multichannel
enhanced Faraday rotators to use in telecommunication
miniaturized devices.

The transmittance and FR spectra of the heterostruc-
tures MH2, MH3, and MH4 are shown in Figs. 5�7, re-
spectively. The PBG of all these heterostructures takes
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Fig. 6. Transmittance and Faraday rota-
tion spectra for heterostructure MH3 =
{A1, B1}7{B2, A2}7{A3, B3}7{B4, A4}7. Here the
design wavelengths are λ(1) = λ(4) = 1.8 µm,
λ(2) = λ(3) = 1.3 µm. The resonance transmittances
are realized at (1) 1.3 µm, (2) 1.55 µm, (3) 1.636 µm,
(4) 1.698 µm, (5) 1.868 µm, and (6) 1.989 µm
wavelengths.

Fig. 7. Transmittance and Faraday rota-
tion spectra for heterostructure MH4 =
{A1, B1}7{B2, A2}7{A3, B3}7{B4, A4}7. Here the
design wavelengths are λ(1) = λ(3) = 1.3 µm,
λ(2) = λ(4) = 1.8 µm. The resonance transmittances
are realized at (1) 1.139 µm, (2) 1.217 µm, (3) 1.317 µm,
(4) 1.427 µm, (5) 1.515 µm, (6) 1.55 µm, (7) 1.585 µm,
(8) 1.714 µm and (9) 1.958 µm wavelengths.

place between 1.1 µm and 2.14 µm, the same as the PBG
of the heterostructure MH1. Consequently, it can be re-
vealed that the BPG of the general multiple heterostruc-
ture MH is independent of the substructures design wave-
lengths.

For MH2, the P2UP3 can be considered as the micro-
cavity structure with a central dielectric layer and the
design wavelength of 1.8 µm, which is surrounded by two
mirror symmetric periodic structures of P1 from left hand

side and P4 from right hand side, where P1 and P4 have
the identical design wavelengths of 1.3 µm. Such a con-
sideration can be made for the MH3 only by exchanging
the design wavelengths of central microcavity structure
and the corner periodic structures.
Looking the transmittance spectra of the heterostruc-

tures MH2, MH3, and MH4, we see that there is a res-
onant transmittance at the 1.55 µm, but the width of
this mode for MH2 and MH3 is wider in comparison with
MH4 one. To illustrate the spectral properties of these
heterostructures it is better to split their PBG into left
and right parts, regarding the central resonance mode of
1.55 µm. For heterostructure MH2 there is only one reso-
nance mode in the right part of PBG at the 1.8 µm, while
there are eight resonance modes at 1.121, 1.156, 1.209,
1.253, 1.318, 1.367, 1.445, and 1.483 µm wavelengths in
the left part of the PBG. In contrary, the left part of PBG
of the MH3 has only one resonance modes at the 1.3 µm,
while there are four resonances at 1.636, 1.698, 1.868 and
1.989 µm wavelengths in the right part. The enhanced
FRs occur at all of resonance wavelengths and their FR
magnitudes are larger for lower transmittances. So that
the highest transmittance of these two heterostructures
which realized at 1.55 µm show the lowest FRs.
The PBG of the heterostructure MH4 includes �ve res-

onances at 1.139, 1.217, 1.317, 1.427, and 1.515 µm wave-
lengths in the left part and three resonances at 1.585,
1.714, and 1.958 µm wavelengths in the right part of the
PBG. The width of the central 1.55 µm mode is not as
wide as the MH2 and MH3 ones, nevertheless, for MH4

there are two resonance transmittances in the vicinity of
the central mode. Similar to aforementioned cases, the
sharp peaks of the FR magnitudes are associated with
all resonance modes of MH4 and the transmittances and
FRs of these modes follow the trade-o� relationship.

4. Conclusion

The multichannel enhanced FRs resulting from res-
onance transmittances of magnetophotonic heterostruc-
tures are demonstrated. For a simple magnetophotonic
heterostructure, it is shown that the high transmittance
enhanced FR in a wide PBG can be adjusted to the de-
sired wavelength through introducing special substruc-
tures with optimized repetition numbers and proper layer
thicknesses. Also, the transmittance MO responses of
di�erent con�gurations of a multiple magnetophotonic
heterostructure are investigated. It is shown that each
con�guration has unique features of multichanneled en-
hanced FRs. Analyzing the results, it is found that the
multiple magnetophotonic heterostructure constituting
of two microcavity substructures with design wavelengths
of 1.3 µm and 1.8 µm could support both telecommuni-
cations resonance wavelengths of 1.3 µm and 1.55 µm si-
multaneously. We expect that the obtained results have
potential applications in designing the multi-function sin-
gle magneto-optical devices such as multiple Faraday ro-
tators and wavelength division multiplexing systems.
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