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Using variational Monte Carlo method, we calculated the 110+ state energies, the derivatives of the total
energy and the ionisation energies of the helium atom, and hydrogen negative ion in the presence of magnetic �eld
regime between 0 a.u. and 10 a.u. Our calculations are based on using two types of compact and accurate trial
wave functions used before to calculate energies in the absence of magnetic �eld. Our results are in good agreement
with the most recent previous accurate values and also with the exact values.
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1. Introduction
The problem of the presence of atoms in magnetic �elds

is a fascinating subject which has attracted a great in-
terest of both experimentalists and theorists in the past
three decades. The motivation behind such great inter-
est in this area arises from several sources. In particu-
lar, at intermediate �eld strengths, the nearly equal im-
portance of the Coulomb and magnetic e�ects has made
progress very di�cult, and so far only two electron prob-
lems have been attempted. This range of �eld strengths is
plagued by the fact that neither the spherical symmetry
of the Coulomb potential nor the cylindrical symmetry
of the constant magnetic �eld can be assumed to domi-
nate [1�4].
In contrast to the hydrogen atom, the problem of the

helium atom is much more intricate because of the occur-
rence of the electron�electron repulsion. Even so, many
considerable e�orts have been devoted to the theoretical
investigations of helium atom in intermediate and strong
magnetic �elds [5�8]. Recently, Wang et al. [9, 10] pre-
sented a con�guration-interaction (CI) approach which
is based on the Hylleraas�Gaussian basis function. Us-
ing this method, they introduced a detailed work of the
hydrogen atom in magnetic �elds and studied the 110+,
111+ and 112+ states of the helium atom in the mag-
netic �eld regime between 0 a.u. and 100 a.u. On the
other hand, Zhao et al. adopted a full CI method with
Hylleraas-like functions in spherical and cylindrical coor-
dinates to calculate the same states for hydrogen negative
ion in strong magnetic �elds. Moreover, they calculated
the total energies, the derivatives of the total energy with
respect to the magnetic �eld and the ionisation energies,
respectively [11, 12]. In Ref. [13], Thirumalai and Heyl
calculated the energy levels for both hydrogen and helium
atoms in strong magnetic �elds as well as the eigenval-
ues and eigenvectors of the generalized two-dimensional
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Hartree�Fock partial di�erential equations for one- and
two-electron systems in a self-consistent manner. They
proved that the method is found to be readily extendable
to systems with more than two electrons.

Extending to our previous works [14�16], our goal in
the present paper is to use the variational Monte Carlo
(VMC) method to compute the total energies, the deriva-
tives of the total energy with respect to the magnetic �eld
and the ionisation energies of the helium atom and the
hydrogen negative ion in the magnetic �eld.

2. Method of calculations

Quantum Monte Carlo (QMC) methods have proved
to be remarkably successful in providing accurate predic-
tions of energies and structures for molecular and atomic
systems. These methods are �exact� for systems of a few
electrons and highly accurate for systems of thousand
of electrons. One of the most important QMC methods
is the VMC method which is based on a combination of
two ideas namely, the variational principle and the Monte
Carlo evaluation of integrals using importance sampling
based on the Metropolis algorithm. It is used to compute
quantum expectation values of an operator. In particu-
lar, if the operator is the Hamiltonian, its expectation
value is the variational energy [17],

EVMC =

∫
|ΨT(R)|2

〈ΨT|ΨT〉

[
ĤΨT

]
(R)d(R)

ΨT(R)
, (2.1)

where R = (R1,R2,R3, . . . ,RN ) is a 3N -dimensional
vector of the electron coordinates. In order to evaluate
the integral in Eq. (2.1) we rewrite it as

EVMC =

∫
P (R)EL(R)d(R), (2.2)

where P (R) = |ΨT(R)|2∫
|ΨT(R)|2 dR is positive everywhere and

is interpreted as a probability distribution function and

EL(R) = [ĤΨT](R)
ΨT(R) is the local energy.

To calculate the integrals in Eq. (2.1) we �rstly con-
struct a trial wave function, Ψα

T(R), depending on a set
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of α-variational parameters α = (α1, α2, . . . αN ) and then
vary the parameters to obtain the minimum energy. The
value of EL is evaluated using a series of points {Ri}
which are sampled from the probability density P (R)
using the Metropolis algorithm [18].
In determining the expectation value of the local en-

ergy, 〈EL〉, it is not necessary to carry out analytic inte-
grations; and, since only di�erentiation of the trial wave
function is required to evaluate the local energy, the trial
wave function may take any desired functional form.
At each of the points {Ri}, the weighted average

EL(R) is evaluated. After a su�cient number of eval-
uations the VMC estimate of EVMC will be

EVMC = 〈EL〉 = lim
N→∞

lim
L→∞

1

N

1

L

N∑
j=1

L∑
i=1

EL (Rij) ,
(2.3)

where L is the ensemble size of random numbers
{R1,R1, . . . ,RL}, which may be generated using a vari-
ety of methods [19, 20] andN is the number of ensembles.
These ensembles so generated must re�ect the distribu-
tion function itself.
Finally, it is important to calculate the standard devi-

ation of the energy [17]:

σ =

√
〈E2

L〉 − 〈EL〉2
L(N − 1)

. (2.4)

3. The trial wave functions

Our calculations for the ground-state of helium and its
isoelectronic ions are based on using two di�erent types
of trial wave functions, the �rst one is a highly compact
wave function that has a clear physical meaning and sat-
is�es all the boundary conditions, this wave function is
proposed �rstly in [21] and is given by

Ψ1 (r1, r2, r12) =
(
1 + P̂

)
exp

(
a1r1 + b1r

2
1

1 + r1

)
× exp

(
a2r2 + b2r

2
2

1 + r2

)
exp

(
dr12

1 + er12

)
, (3.1)

where a1, a2, b1, b2, d, and e are variational parameters
and P̂ is the operator that permutes the two electrons.
The new feature in this wave function is the functional

form: exp
(
ar+br2

1+r

)
which helps in satisfying Kato-cusp

conditions, which have been stressed in the construction
of an accurate wave function previously. This wave func-
tion was used to calculate the ground state energy for the
He atom and He-like isoelectronic ions for Z = 1 to 10
and the results obtained were better than pervious works
which used compact wave functions for the two-electron
systems. The second type of trial wave function takes
the form

Ψ2 (r1, r2, r12) =

(
2β + 1− e−βr12

2β

)
e−Z(r1+r2)

×
[
1 + C1

(
r21 + r22

)
+ C2(r

4
1 + r42)

]
, (3.2)

where β, C1, and C2 are variational parameters. Ψ2 has
been constructed by Rodriguez et al. [22] as a simple
function having accuracies and shapes similar to those

given by Green et al. [23] or by Chandrasekhar et al.
[24, 25], but with correct cusp conditions. Ψ2 is a prod-
uct of hydrogenic one-electron solutions and a fully cor-
related part satis�es all the coalescence cusp conditions
at the Coulomb singularities. The application of using
Ψ2 was extended not only to ground state of helium but
also to other ions belonging to the He isoelectronic se-
quence up to Z = 10. The results obtained are in good
agreement with the exact values.

4. The Hamiltonian for the two-particle systems

in magnetic �eld

In our work, we assume that the nuclear mass is in�-
nite and the magnetic �eld is oriented along the z axis.
Hence, the non-relativistic Hamiltonian H for the helium
atom and the hydrogen negative ion in a homogeneous
magnetic �eld can be written as [12]:

H = −1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
− Z

r2
+

1

r12

+

[
γ2ρ2

8
+
γ (Lz + 2Sz)

2

]
, (4.1)

where r1 = |r1| and r2 = |r2| in which r1 and r2 de-
note the relative radius vectors of the two electrons with
respect to the nucleus and r12 = |r12| is the distance be-
tween the two electrons, ρ2 = (x21 + y21) + (x22 + y22), γ
is the magnetic �eld parameter, Sz is the z-component
of the total spin, Lz is the z-component of the total an-

gular momentum, γ
2ρ2

8 is the diamagnetic term, γ2Lz is

the Zeeman term, − Z
r1
− Z

r2
is the attractive Coulomb

interaction with the nucleus (donor) and γSz represents
the spin Zeeman term.
Our calculations are based on the Hylleraas coordi-

nates [26], such that ∇2
1 +∇2

2 in Eq. (4.1) takes the fol-
lowing form:

∇2
1 +∇2

2 =
∂2

∂r21
+

2

r1

∂

∂r1
+

∂2

∂r212

2

r12

∂

∂r12

+ 2r̂1r̂12
∂2

∂r1∂r12
+

∂2

∂r22
+

2

r2

∂

∂r2
+

∂2

∂r212

+
2

r12

∂

∂r12
− 2r̂2r̂12

∂2

∂r2∂r12
(4.2)

5. Results

The Monte Carlo method described here has been em-
ployed for calculating the 110+ state energies of the he-
lium atom in the magnetic �eld regime between 0 a.u.
and 10 a.u. and the hydrogen negative ion from 0 a.u.
to 0.8 a.u. All energies are obtained in atomic units, i.e.
(~ = e = me = 1) with a set of 4 × 107 Monte Carlo
integration points in order to make the statistical er-
ror as low as possible. In the absence of the magnetic
�eld, the parameters appearing in Ψ1 were optimized
in Ref. [21] and it has been proven that these param-
eters can be written in a general form depending on the
nuclear charge Z. Firstly, the two parameters a1, a2,
and d were �xed (a1 = a2 = −Z, d = 0.5) in order to
satisfy all the cusp conditions. Then, other parameters
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are given by the following relations: b1 = −1.0778 × Z,
b2 = 0.4142− 0.8287×Z, and e = 0.2247×Z. Then, the
wave function Ψ1 exhibits the advantage that it does not
need to be optimized each time for a given Z value. Also,
for Ψ2 we take the values of the variational parameters
from Ref. [22] for γ = 0. For every non-zero values of the
external magnetic �eld, the variational parameters ap-
pearing in Ψ1 and Ψ2 were optimized using the steepest
descent (SD) method which is considered as one of the
most popular methods to optimize the wave function for
Monte Carlo methods [27]. We have used SD optimiza-
tion method successfully in Ref. [28] and accurate results
were obtained.
Before presenting the numerical results of our calcula-

tions we shall explain our spectroscopic notation in the
presence of the �eld as well as its correspondence to the
�eld-free notation.
According to the four conserved quantities M , Πz, S

2,
and Sz which characterize the di�erent eigenstates of
atoms, we denote a state by ν2S+1

Sz
M(−1)Πz , where 2S+1

is the spin multiplicity and ν = 1, 2, 3, . . . is the degree
of excitation within a given subspace such that S2 is the
square of the total spin, Πz is the z-component Πz of the
total parity, Sz is the z-component Sz of the total spin.
For simplicity, we will omit the index Sz from this point
forward.
In the following we present results forM = 0 and even

z-parity. Hence, in the present paper we will investigate
and show results for the subspaces 110+, i.e. υ = 1, S = 0
andM = 0. In the low-�eld and part of the intermediate
regime the 110+ state is the global ground state.

5.1. The ground state of the helium atom

For the helium atom (Z = 2), we have calculated the
total energies and derivatives of the total energy of 110+

state as functions of the magnetic �eld. Our calculations
for weak magnetic �eld (0�0.8 a.u.) are based on using
the function Ψ1, given by Eq. (3.1), where for intermedi-
ate range (1�10 a.u.) we used the function Ψ2 which is
given by Eq. (3.2).

TABLE ITotal energy E, electron detachment energy I, derivative of the total energy ∂E
∂γ

of the 110+ state

and one-electron ionisation threshold T of helium atom as functions of the magnetic �eld strength γ.

γ
E(110+)
our work

E(8) E(9) E(10) E(11)
∂E
∂γ

our work
∂E
∂γ

(11)
T

I
our work

Standard
deviation σ

0 −2.903771 −2.903724 −2.903473 −2.9037155 −2.903724374 0.000 0.000 −2.000 0.903771 5× 10−5

0.001 −2.90378 −2.903724173 0.00397844 0.003978101 −1.999499938 0.904280062 7× 10−5

0.002 −2.903698 −2.903723576 0.00795595 0.007955154 −1.998999750 0.90469825 6× 10−5

0.005 −2.903776 −2.903719398 0.01986901 0.019869592 −1.997498438 0.906277562 2× 10−4

0.008 −2.903758 −2.903711641 0.03173584 0.031737483 −1.995996000 0.907762 4× 10−4

0.01 −2.903761 −2.903704 −2.903451 −2.9036898 −2.903704480 0.03963004 0.039610410 −1.994993750 0.90876725 3× 10−4

0.02 −2.903693 −2.903645 −2.903386 −2.9036275 −2.903644813 0.07824952 0.078244375 −1.989975001 0.913717999 2× 10−4

0.05 −2.903288 −2.902966 −2.9032106 −2.903227357 0.18259450 0.182410623 −1.974843777 0.928444223 4× 10−4

0.08 −2.902420 −2.902453 −2.902453100 0.26698340 0.266479607 −1.959600176 0.942819824 2× 10−4

0.1 −2.901723 −2.901740 −2.901479 −2.9017263 −2.901739559 0.00039294 0.000397827 −1.949375430 0.95234757 5× 10−4

0.2 −2.895829 −2.895499 −2.8958159 −2.895835116 0.00079585 0.000795654 −1.897506827 0.998322173 4× 10−4

0.5 −2.856495 −2.855906 −2.8562141 −2.856237306 0.00198963 0.001989116 −1.734628064 1.121866936 7× 10−4

0.8 −2.788485 −2.788425 −2.788425996 0.00318259 0.003182532 −1.561526260 1.22695874 6× 10−4

1 −2.850215 −2.730373 −2.730015 −2.7302745 −2.7303464 0.312982810 −1.440989741 1.409225259 5× 10−4

2 −2.307957 −2.33065 −2.330270 −2.3305260 −2.3306211 0.470160829 −0.788842154 1.519114846 6× 10−4

5 −0.3530577 −0.5755 −0.575411 −0.5757384 −0.5757771 0.663587509 1.456132354 1.809190054 4× 10−4

8 1.4591410 1.5457109 0.742130995 3.911144369 2.452003369 8× 10−4

10 3.149141 3.064202 3.0636900 3.0636148 0.774024780 5.609851957 2.460710957 7× 10−4

8 total energies obtained from Ref. [8]; 9 total energies obtained from Ref. [9]; 10 total energies obtained from Ref. [10];
11 total energies obtained from Ref. [11]

The derivatives of the total energy with respect to the
magnetic �eld, which can be obtained by the Hellman�
Feynman theorem [12]:

∂E

∂γ
=

〈∣∣∣∣∂H∂γ
∣∣∣∣〉 , (5.1)

are provided in the seventh column of Table I. The tenth
column in Table I provides the values for the identical
one-electron ionisation threshold of the state 110+ in
terms of the scaling rule [5]:

T (γ) = γ − 4E(H, γ/4), (5.2)

where the binding energy of the ground state of hydro-

gen, E(H, γ/4), can be obtained from Ref. [2] and then
the one-electron ionisation energies I(γ) of 110+ state
can be obtained from the one-electron ionisation thresh-
old T (γ) by subtracting the corresponding total ener-
gies E(γ). The obtained results of the state 110+ for
the helium atom are presented in Table I with the most
accurate available results for comparison. The compar-
ison shows that our results have a good accuracy com-
paring with the results obtained by other methods. It
is seen from Table I that the energy of the 110+ state
of the helium atom in the absence of magnetic �eld is
(−2.903771), which is closer to the value (−2.90372438)
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TABLE II

Total energy E, electron detachment energy I, derivative of the energy ∂E
∂γ

of the 110+ state and one-electron

ionisation threshold T of hydrogen negative ion as functions of the magnetic �eld strength γ.

γ
E

our work
E(12) I(H−)

our work
I(12) I(30) I(31)

∂E
∂γ

our work
∂E
∂γ

(12)
T

Standard
deviation σ

0 −0.5274899 −0.52774673 0.0274899 0.02774673 0.02754875 0.000 0.000 −0.50000000 6× 10−5

0.0008 −0.5273412 −0.52774498 0.02774136 0.02814514 0.02794446 0.00317892 0.00317584 −0.49959984 3× 10−4

0.001 −0.5274896 −0.52774279 0.02798985 0.02824304 0.02804078 0.02735 0.0039686 0.00396936 −0.49949975 5× 10−4

0.002 −0.5279142 −0.52773712 0.0289152 0.02873812 0.02853877 0.02785 0.00792587 0.00792574 −0.49899900 6× 10−4

0.005 −0.5274714 −0.52769417 0.02997765 0.03020042 0.03000425 0.0293 0.01975373 0.01975019 −0.49749375 2× 10−4

0.008 −0.52744414 −0.52762077 0.03146014 0.03163677 0.03142473 0.03144386 0.03144091 −0.49598400 3× 10−4

0.01 −0.5274141 −0.52754683 0.0324391 0.03257183 0.03237472 0.0317 0.03909503 0.03909497 −0.49497500 5× 10−4

0.02 −0.5269161 −0.52697467 0.0370157 0.03707463 0.03687014 0.0362 0.07536712 0.07534053 −0.4899004 2× 10−4

0.05 −0.5233312 −0.52332420 0.04895449 0.04894749 0.04876375 0.16381760 0.16328434 −0.47437671 5× 10−4

0.08 −0.5173416 −0.51739859 0.0589306 0.05898758 0.05874669 0.22928120 0.22924867 −0.45841100 2× 10−4

0.1 −0.5124769 −0.51244917 0.06495042 0.06492269 0.06470874 0.26525270 0.26522837 −0.44752648 3× 10−4

0.2 −0.4789198 −0.47893274 0.08853823 0.08855118 0.08830200 0.394550810 0.39446558 −0.39038157 1× 10−4

0.5 −0.3285949 −0.32832661 0.13138436 0.13111607 0.13083820 0.57025990 0.58095536 −0.19721054 3× 10−4

0.8 −0.1394019 −0.13965117 0.15711851 0.15736777 0.15710667 0.59094730 0.66841077 0.01771661 5× 10−4

12 the obtained results of total energy from Ref. [8]; 30 the obtained results of electron detachment energy from Ref. [30];
31 the obtained results of electron detachment energy from Ref. [31]

obtained by Drake et al. [29]. Figure 1 shows the ionisa-
tion energy of the 110+ state obtained with the function
Ψ1 with respect to the magnetic �eld strength γ, for �eld
strengths from γ = 0 to γ = 0.8. Furthermore, Fig. 2
shows the ionisation energy of the state 110+ obtained
with the function Ψ2 with respect to the magnetic �eld
strength γ for �eld strengths from γ = 1 to γ = 10.
Figures 1, 2 show that the ionisation energies increase

monotonically with increasing �eld strength.

Fig. 1. The ionisation energy of the 110+ state ob-
tained with the function Ψ1 versus the magnetic �eld
strength γ in a.u.

Fig. 2. The ionisation energy of the 110+ state ob-
tained with the function Ψ2 versus the magnetic �eld
strength γ in a.u.

5.2. The ground state of the hydrogen negative ion

The total energies and the electron detachment ener-
gies of the state 110+ for the hydrogen negative ion have
been calculated as functions of the magnetic �eld using
the function Ψ1. Our results are presented in Table II.
The electron detachment energy is de�ned to be the re-

quired energy to remove one electron from the atom with-
out changing the quantum numbers of the total system.
In order to obtain the electron detachment energy,

namely one-electron ionization energy

I
(
H−
)
= T − E,

we have to compute the one-electron ionization threshold

T = γ − I(H),

where I(H), the binding energy of the ground state of
hydrogen at magnetic �eld γ, is given by Kravchenko
et al. [2]. For the 110+ state, the identical one-electron
ionization threshold is provided in Table II. In addition,
we also calculated the derivatives of the total energy with
respect to the magnetic �eld of the state 110+, which
re�ect the changing relationship between the total ener-
gies and the �eld strengths, by means of the Hellman�
Feynman theorem [12] which is given in Eq. (5.1). We
compare our results with those obtained by other meth-
ods from γ = 0.0 a.u. to γ = 0.8 a.u. (1.0 a.u. corresponds
to 2.35×105 T). Our �eld-free total energy is −0.5274899,
which is closer to the value −0.52775102 calculated by
Drake et al. [29] in the Hylleraas coordinates. Besides,
it can also be found that the electron detachment energy
at zero �eld obtained by Drake et al. is a little bit higher
than ours.
As can be seen from Table II, the 110+ state is raised

from −0.5274899 at γ = 0.0 a.u. to −0.1394019 at γ =
0.8 a.u. This state is the most tightly bound state for all
�eld strengths.
In addition, the detachment energy increased from

0.0274899 a.u. at γ = 0.0 to 0.15711851 a.u. at γ = 0.8.
There are two reasons which give rise to the fact that
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Fig. 3. The ionisation energy of the 110+ state ob-
tained with the function Ψ1 versus the magnetic �eld
strength γ in a.u.

this state is the most tightly bound one. On the one
hand, the electrons are in this state much closer to the
nucleus than in other states. This increases the binding
due to the attractive nuclear potential energy. On the
other hand, correlation has an important impact on the
binding energy. Both e�ects are reinforced with increas-
ing �eld strength as the electrons become more and more
con�ned in the x�y plane perpendicular to the magnetic
�eld. These e�ects overcome the in�uence of the static
electron�electron repulsion. It is clear that our results
are in good agreement with the previous data. Figure 3
shows that the ionisation energy of the state 110+ in-
creases with respect to the magnetic �eld strength γ for
�eld strengths from γ = 0 to γ = 0.8.

6. Conclusions

In the present work, we have studied the helium atom
and the hydrogen negative ion in the presence of a mag-
netic �eld by using the well known variational Monte
Carlo method. Accordingly, we have calculated the total
energies, the derivatives of the total energy with respect
to the magnetic �eld and the ionisation energies of the
110+ state for both the helium and the hydrogen neg-
ative ions by using two accurate trial wave functions.
High accuracy results are obtained in the low and the
intermediate �elds due to the fact that we have used two
trial wave functions, each of them takes into considera-
tion the electron�electron correlation. Our results are in
good agreement with the most recent previous accurate
values.
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