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In the frame of a non-standard scale relativity model, the speci�c momentum, states density and internal energy
conservations laws are obtained. The chaoticity, either through turbulence in the fractal hydrodynamics approach,
or through stochasticization in the Schrödinger type approach, is generated only by the non-di�erentiability of the
movement trajectories of the complex �uid entities. Using the conservation laws mentioned above, by numerical
simulations, hysteretic type e�ects (dynamics of hysteretic cycles) occur.
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1. Introduction

Fluids with non-linear viscous behaviors, as well as
viscoelastic materials are complex �uids. A great vari-
ety of materials are categorized as complex �uids: col-
loidal �uids, polymers (elastomers, thermoplastics and
composites), biological �uids (DNA, proteins, cells, dis-
persions of biopolymers and cells, human blood), foams,
emulsions, gels, suspensions, micelar and liquid-crystal
phases, molten materials. In this case the �uids do not
obey to the hydrodynamic laws [1�3].
The dynamics of the complex �uid entities represent an

interesting topic. Friction causes loss of energy. This phe-
nomenon can be explained through a nonlinear function
depending not only on normal forces but also on veloc-
ity. The main element in such a system is �ow restriction
caused by the accumulation of component entities. At
low temperatures and high densities, the complex �uid
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entities rearranges causing irregular intervals of solid-like
behavior followed by stress relaxation. Any small dis-
placement of a single particle as well as any in�nitesimal
stress increase can cause transition from a stable state to
a �uid-like behavior. Consequently, this type of dynamics
becomes highly nonlinear in the surrounding nature [4].
Correspondingly, theoretical models of dynamics in

complex �uids can become sophisticated and ambiguous
[1�3]. However, such situation can be standardized if we
consider that complexities in interaction processes im-
pose various time resolution scales while the evolution
pattern leads to di�erent freedom degrees [5�8].
To develop a theoretical model we have to admit that

complex �uids with chaotic behaviour can achieve self-
-similarity (space-time structures can appear) associated
with strong �uctuations at all possible space-time scales
[5�8]. Then, for time scales that prove to be larger if
compared with the inverse of the highest Lyapunov ex-
ponent, the deterministic trajectories are replaced by a
collection of potential routes. In its turn, the concept
of �de�nite positions� is replaced by that of probability
density [9�12]. A most impressive example in this respect
refers to collision processes in complex �uid. Here, the
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dynamics of the entities can be described through the
non-di�erentiable curves [9�11].
Since non-di�erentiability appears as a universal prop-

erty of complex �uids, it is necessary to create a non-
-di�erentiable physics of complex �uids. Under such cir-
cumstances, if we consider that the complexity of in-
teractions in the dynamics of complex �uids is replaced
by non-di�erentiability, it is no longer necessary to use
the whole classical �arsenal� of quantities from standard
physics (di�erentiable physics) [1�3].
This topic was developed in [13, 14] using both the

scale relativity theory (SRT) [10, 11] and non-standard
scale relativity theory (NSRT) [15�29]. According to SRT
or NSRT, the dynamics of complex �uids entities takes
place on continuous but non-di�erentiable curves (fractal
curves), so that all physical phenomena involved depend
not only on space-time coordinates but also on space-
-time scale resolution. That is why physical quantities
describing the dynamics of complex �uids can be consid-
ered as fractal functions [10, 11]. Moreover, according to
geodesics in a non-di�erentiable (fractal) space, the com-
plex �uid entities may be reduced to and identi�ed with
their own trajectories (i.e. their geodesics) so that the
complex �uids should behave as a special ��uid� lacking
interactions � fractal �uid [10, 11].
In the present paper various theoretical aspects of com-

plex �uid dynamics (patterns generation, hysteretic be-
haviours, etc.) were analyzed using the NSRT.

2. Motion equation via non-di�erentiability

We can simplify the dynamics of a complex �uid sup-
posing that the complex �uid entities move on continu-
ous but non-di�erentiable curves, i.e. fractal curves (for
example, the Peano curve, the Koch curve or the Weier-
strass curve [9�11]).
Once accepted such a hypothesis, the dynamics of the

complex �uid entities are given by the fractal operator

d̂/dt [15�29]:

d̂

dt
=

∂

∂t
+ V̂ · ∇ − i

λ2

τ

(
dt

τ

)(
2

DF

)
−1

∆, (1)

where

V̂ = V D − iV ′F (2)

is the complex velocity, V D is the di�erentiable and
resolution scale independent velocity, V F is the non-
-di�erentiable and resolution scale dependent velocity,
V̂ · ∇ is the convective term,(

λ2

τ

)(
dt

τ

)(
2

DF

)
−1

∆ =

(
λ2

τ

)(
dt

τ

)(
2

DF

)
−1

×
[(

∂2

∂x2

)
+

(
∂2

∂y2

)
+

(
∂2

∂z2

)]
(3)

is the dissipative term, DF is the fractal dimension of
the movement curve, λ is the space scale, τ is the time
scale and λ2/τ is a speci�c coe�cient associated to the
fractal-non-fractal transition. For DF any de�nition can

be used (the Hausdor��Besikovici fractal dimension, the
Kolmogorov fractal dimension, etc. [9�11]), but once ac-
cepted such a de�nition for DF, it has to be constant over
the entire analysis of the complex �uid dynamics. In a
particular case, for motions on the Peano curves, DF = 2
[9�11] of the complex �uid entities, the fractal operator

(1) reduces to Nottale's operator ( d̂/dt)N :(
d̂

dt

)
N

=
∂

∂t
+ V̂ · ∇ − iDN∆,

where DN = λ2/τ is the Nottale coe�cient associated to
the fractal-non-fractal transition.
Applying the fractal operator (1) to the complex speed

(2) and accepting the principle of scale covariance [10, 11]
in the form

d̂V̂

dt
= 0, (4)

we obtain the motion equation

d̂V̂

dt
=
∂V̂

∂t
+
(
V̂ · ∇

)
V̂ − i

λ2

τ

(
dt

τ

)(
2

DF

)
−1

×∆V̂ = 0. (5)

It means that at any point of a fractal path, the
local acceleration term, ∂tV̂ , the non-linear (con-

vective) term, (V̂ · ∇)V̂ , and the dissipative term,

(λ2/τ)(dt/τ)(2/DF)−1∆V̂ , make their balance. There-
fore, the complex �uid is assimilated to a �rheologi-
cal� �uid, whose dynamics are described by the com-
plex velocities �eld, V̂ , complex acceleration �eld, ∂tV̂ ,
etc. and by the imaginary viscosity type coe�cient,
i(λ2/τ)(dt/τ)(2/DF)−1. The �rheology� of the �uid can
provide hysteretic properties to the complex �uid (the
complex �uid has a hysteresis cycle, memory, etc. [28]).

3. Chaoticity via non-di�erentiability

For irrotational motions of the complex �uid entities

∇× V̂ = 0, ∇× VD = 0, ∇× VF = 0, (6a�c)

we can choose V̂ of the form

V̂ = − i
λ2

τ

(
dt

τ

)(
2

DF

)
−1

∇ lnψ, (7)

where ϕ ≡ lnψ is the velocity scalar potential. By substi-
tuting (7) in (5) and using the method described in [28],
it results that

dV̂

dt
= − i

λ2

τ

(
dt

τ

)(
2

DF

)
−1

×∇

[
∂ lnψ

∂t
− i

λ2

τ

(
dt

τ

)(
2

DF

)
−1 ∇ψ

ψ

]
= 0. (8)

This equation can be integrated in a universal way and
yields

λ4

τ2

(
dt

τ

)( 4
DF

)
−2

∆ψ + i
λ2

τ

(
dt

τ

)( 2
DF

)
−1

∂ψ

∂t
= 0, (9)

up to an arbitrary phase factor which may be set to zero
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by a suitable choice of the phase of ψ. For motions of
the complex �uid entities on the Peano curves, DF = 2
[9] at the Compton scale λ2/τ = ~/2m0 [10, 11], with
~ the reduced Plank constant and m0 the rest mass of
the complex �uid entities, the relation (9) becomes the
standard Schrödinger equation

~2

2m0
∆ψ + i~

∂ψ

∂t
= 0.

If ψ =
√
ρe iS , with

√
ρ the amplitude and S the phase

of ψ, the complex velocity �eld (7) takes the explicit form

V̂ =
λ2

τ

(
dt

τ

)( 2
DF

)
−1

∇S − i
λ2

2τ

(
dt

τ

)( 2
DF

)
−1

∇ ln ρ,

(10)

V D =
λ2

τ

(
dt

τ

)(
2

DF

)
−1

∇S, (11)

V F =
λ2

2τ

(
dt

τ

)(
2

DF

)
−1

∇ ln ρ. (12)

By substituting (10)�(12) in (5) and separating the real
and the imaginary parts, up to an arbitrary phase factor
which may be set at zero by a suitable choice of the phase
of ψ, we obtain

∂V D

∂t
+ (V D · ∇)V D = −∇(Q), (13)

∂ρ

∂t
+∇ · (ρV D) = 0, (14)

with Q the speci�c fractal potential

Q = −2
λ4

τ2

(
dt

τ

)(
4

DF

)
−2 ∆

√
ρ

√
ρ

= −V 2
F

2
− λ2

τ

(
dt

τ

)(
2

DF

)
−1

∇ · V F. (15)

Equation (13) represents the speci�c momentum con-
servation law, while Eq. (14) represents the states den-
sity conservation law. Through the fractal velocity, V F,
the speci�c fractal potential Q is a measure of non-
-di�erentiability of the complex �uid entities trajectories,
i.e. of their chaoticity. Equations (13)�(15) de�ne the
fractal hydrodynamics model (FHM). In such a context,
the complex �uid is assimilated to a fractal �uid.

Now, certain conclusions are evident: (i) for motions
of the complex �uid entities on the Peano curves at the
Compton scale [10, 11], the FHM reduces to a quantum
hydrodynamic model (QHM); (ii) the fractal velocity V F

does not represent actual mechanical motion, but does
contribute to the transfer of speci�c momentum and the
concentration of energy. This may be seen clearly from
the absence of V F from the states density conservation
law, and from its role in the variational principle [10, 11];
(iii) any interpretation of Q should take cognizance of the
�self� or internal nature of the speci�c momentum trans-
fer. While the energy is stored in the form of the mass
motion and potential energy (as it is classically), some is
available elsewhere and only the total is conserved. It is

the conservation of energy and speci�c momentum that
ensures reversibility and the existence of eigenstates, but
denies a Brownian-motion [9] form of interaction with an
external medium; (iv) for the Peano curves motions of
the complex �uid entities at spatial scales higher than
the dimension of the boundary layer and at temporal
scales higher than the oscillation periods of the pulsat-
ing velocities which overlaps the average velocity of the
complex �uid motions (for details see [1�3], the FHM re-
duces to the standard hydrodynamical model [30]). We
remind that, in this approximation of motion and for a
special complex �uid type, ∇Q = −∇σ̂/ρ, with σ̂ is the
internal stress tensor type. In particular case, σ̂ can be
put in correspondence with the pressure p; (v) since the
position vector of the complex �uid entity is assimilated
with a stochastic process of Wiener type [9�11], ψ is not
only the scalar potential of a complex velocity (through
ϕ ≡ lnψ) in the frame of FHM, but also states density
(through |ψ|2) in the frame of a Schrödinger type model.
It results the equivalence between the formalism of the
FHM and the one of Schrödinger type. Moreover, the
chaoticity, either through turbulence in the fractal hydro-
dynamics approach, or through stochasticization in the
Schrödinger type approach, is generated only by the non-
-di�erentiability of the movement trajectories in a fractal
space; (vi) in the standard model (Landau's scenario [30])
the Fourier spectrum is always discrete and cannot ap-
proximate a continuum spectrum that in case of a large
number of frequencies will generate a unlimited number
of spectral components as a result of their beats which
appear thanks to the presence of nonlinearities in the
complex �uid. Yet, considering standard model, the �ow
can never be truly chaotic because, in case of multiple
periodic functions, correlations tend to be not null, but
having an oscillating character. Therefore, Landau's sce-
nario can describe transition towards chaotic behavior
only in a complex �uid with an in�nite number of de-
grees of freedom. In our case, when δt/τ → 0 for DF 6= 2
the physical quantities that describe the dynamics of the
complex �uid are no longer de�ned. So, in this approxi-
mation, a simulation of a system with an in�nite number
of degrees of freedom is used. Moreover, dynamic states
could be generated, characterized by windows of regular
oscillations interrupted by chaotic bursts, the transition
between the two states being spontaneous, unpredictable
and independent of any of the control parameters varia-
tion (turbulence through intermittency).

4. A numerical simulation

In the following, using (13), (14) and (15) with ∇Q =
∇p/ρ, we analyze the dynamics of the complex �uid in a
plane symmetry. The presence of an external perturba-
tion is speci�ed by adequate initial and boundary condi-
tions (e.g. spatio-temporal Gaussian). In this situation,
let us introduce the normalized coordinates

ωt = τ0, kx = ξ, ky = η,
Vxk

ω
= Vξ,
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Vyk

ω
= Vη,

ρ

ρ0
= N, (16a�f)

where ω, k, and ρ0 are critical parameters of the complex
�uid (for details see [1�3]).
Then, Eqs. (13) and (14) become

∂

∂τ0
(NVξ) +

∂

∂ξ

(
NV 2

ξ

)
+

∂

∂η
(NVξVη) = −N−1 ∂N

∂ξ
,

∂

∂τ0
(NVη) +

∂

∂ξ
(NVξVη) +

∂

∂η

(
NV 2

η

)
= −N−1 ∂N

∂η
,

∂N

∂τ0
+

∂

∂ξ
(NVξ) +

∂

∂η
(NVη) = 0. (17a�c)

For the numerical integration we shall impose the initial
conditions

Vξ(0, ξ, η) = 0, Vη(0, ξ, η) = 0, N(0, ξ, η) = 1/5,

1 ≤ ξ ≤ 2, 0 ≤ η ≤ 1, (18a�e)

as well as the boundary conditions

Vξ (τ0, 1, η) = Vξ (τ0, 2, η) = 0,

Vη (τ0, 1, η) = Vη (τ0, 2, η) = 0,

Vξ (τ0, ξ, 0) = Vξ (τ0, ξ, 1) = 0,

Vη (τ0, ξ, 0) = Vη (τ0, ξ, 1) = 0,

N (τ0, 1, η) = N (τ0, 2, η) = 1/5,

N (τ0, ξ, 0) =
1

10
exp

(
−
(
τ0 − 1/5

1/5

)2
)

× exp

(
−
(
ξ − 3/2

1/5

)2
)
,

N (τ0, ξ, 1) = 1/5. (19a�g)

By using the �nite di�erences method [31], the sys-
tem (17a�c) with the initial conditions (18a�e) and the
boundary ones (19a�g) was numerically resolved.
In Fig. 1a,c,e three-dimensional dependences of the

normalized density N , normalized velocities, Vξ and Vη,
on the normalized coordinates, ξ and η are given for the
normalized time τ0 = 0.65. Also in Fig. 1b,d,f the two-
-dimensional contour of the normalized density N , nor-
malized velocities, Vξ and Vη, are given for the same nor-
malized time. The following results: (i) the two patterns
generation; (ii) the symmetry of the normalized velocity,
Vξ, with respect of symmetry axis of the spatial-temporal
Gaussian; (iii) vertices at the patterns periphery for the
normalized velocity �eld, Vη.
In our opinion, the patterns generation is a con-

sequence of the self-structuring in complex �uids
[1�3, 32�34].

5. Hysteretic type behaviours

via non-di�erentiability

Applying the fractal operator (1) to the internal energy
per unit volume, ε, and adopting the principle of scale
covariance [10, 11], we obtain the internal energy per
unit volume conservation law

Fig. 1. (a)�(f) Three-dimensional dependences and
two-dimensional contour of the normalized density N
(a, b), normalized velocity Vξ (c, d) and normalized ve-
locity Vη (e, f) on the normalized coordinates, ξ and η
for the normalized time τ0 = 0.65.

d̂(ρε)

dt
=
∂(ρε)

∂t
+
(
V̂ · ∇

)
(ρε)

− i
λ2

τ

(
dt

τ

)(
2

DF

)
−1

∆(ρε) = 0. (20)

For the types of movements mentioned in Sect. 4, sepa-
rating the real part from the imaginary one in Eq. (20),
we shall obtain

∂(ρε)

∂t
+∇(ρεV D) = (ρε)∇V D, (21)

V F · ∇(ρε) = −λ
2

τ

(
dt

τ

)(
2

DF

)
−1

∆(ρε). (22)

One can notice that, although there is internal energy
per unit volume transport at di�erentiable scale, a sim-
ilar phenomenon (convection transport) at fractal scale
occurs.

Let us reconsider Eqs. (13), (14) and (21) in a plane
symmetry for ∇Q = ∇p/ρ and let us assume that the
variation of p is induced by the variations of internal
energy per unit volume and states density, ∇p = ν∇(ρε),
with ν = const.

Then, in dimensionless variables,

ωt = τ, kx = ξ, ky = η,
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Vxk

ω
= Vξ,

Vyk

ω
= Vη,

ρ

ρ0
= N,

ε

ε0
= Θ , (23a�g)

Eqs. (13), (14) and (21) become

∂

∂τ
(NVξ) +

∂

∂ξ

(
NV 2

ξ

)
+

∂

∂η
(NVξVη) = −∂(NΘ)

∂ξ
,

(24)

∂

∂τ
(NVη) +

∂

∂ξ
(NVξVη) +

∂

∂η

(
NV 2

η

)
= −∂(NΘ)

∂η
,

(25)
∂N

∂τ
+

∂

∂ξ
(NVξ) +

∂

∂η
(NVη) = 0, (26)

∂(NΘ)

∂τ
+

∂

∂ξ
(NΘVξ) +

∂

∂η
(NΘVη)

= NΘ

(
∂Vξ
∂ξ

+
∂Vη
∂η

)
, (27)

where the functional scaling relation, νk2/ω2 = 1, was
considered. In Eqs. (23f,g) and (24)�(27) ρ0 and ε0 cor-
respond to equilibrium density and equilibrium internal
energy per unit area of the complex �uid. For numerical
integration, we consider the initial conditions,

Vξ(0, ξ, η) = 0, Vη(0, ξ, η) = 0,

N(0, ξ, η) = 1/4, Θ(0, ξ, η) = 1/4,

0 ≤ ξ × η ≤ 1× 1, (28a�e)

and the boundary ones,

Vξ(τ, 0, η) = 0, Vξ(τ, 1, η) = 0,

Vη(τ, 0, η) = 0, Vη(τ, 1, η) = 0,

N(τ, 0, η) = 1/4, N(τ, 1, η) = 1/4,

Θ(τ, 0, η) = 1/4, Θ(τ, 1, η) = 1/4,

Vξ(τ, ξ, 0) = 0, Vξ(τ, ξ, 1) = 0,

Vη(τ, ξ, 0) = 0, Vη(τ, ξ, 1) = 0,

N(τ, ξ, 0) = N0 exp

(
− (τ − 1/4)2

(1/4)2

)
× exp

(
− (ξ − 1/2)2

(1/4)2

)
,

N(τ, ξ, 1) = 1/4,

Θ(τ, ξ, 0) = Θ0 exp

(
− (τ − 1/4)2

(1/4)2

)
× exp

(
− (ξ − 1/2)2

(1/4)2

)
,

Θ(τ, ξ, 1) = 1/4. (29a�p)

In the boundary condition (29m,o) we assumed that the
perturbation has a space-time Gaussian pro�le, N0 is the
maximum normalized states density and Θ0 is the max-
imum normalized internal energy per unit volume.

Equations (24)�(27) with the initial conditions (28a�e)
and the boundary ones (29a�p) were numerically inte-
grated via �nite di�erences [31]. By means of numeri-
cal solutions in Fig. 2a�l the three-dimensional depen-
dences and two-dimensional contour of the normalized
states density N (a,b), normalized internal energy per

Fig. 2. (a)�(l) Three-dimensional dependences and
two-dimensional contour of the normalized states den-
sity N (a,b), normalized internal energy per unit volume
Θ (c,d), normalized velocity Vξ (e,f), normalized veloc-
ity Vη (g,h), normalized current density J = N(V 2

ξ +

V 2
η )

1/2 (i,j), and diagonal component of the normalized

internal stress tensor type σ = N(V 2
ξ + V 2

η ) (k,l) on the
normalized spatial coordinates (ξ, η) at the normalized
time τ = 0.65 for N0 = 1 and Θ0 = 1.
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unit volume Θ (c,d), normalized velocity Vξ (e,f), nor-
malized velocity Vη (g,h), normalized current density

J = N(V 2
ξ + V 2

η )1/2 (i,j) and diagonal component of the

normalized internal stress tensor type σ = N(V 2
ξ + V 2

η )

(k,l) on the normalized spatial coordinates (ξ, η) at the
normalized times = 0.65 for N0 = 1 and Θ0 = 1 are plot-
ted. The following results are obtained:
(i) the generation of structures in complex �uid by
means of solitons packet solutions [35, 36]) (see the peaks
from Fig. 2a, c, e, g, i, k and pronounced contours from
Fig. 2b, d, f, h, j, l;
(ii) The normalized velocity Vξgo which is normal to the
�complex �uid streamline� is symmetric with respect to
the symmetry axis of the space-time Gaussian, while ver-
tices are induced at the periphery of the structures of the
normalized velocity Vη (which is along the �complex �uid
streamline�;
(iii) potential movement couplings at fractal scale as well
as the potential one at di�erentiable scale are performed
through the internal stress tensor type. As a result, the
complex �uid entity acquires additional kinetic energy
(induced by non-di�erentiability) that allows jumps from
its own �stream line� to another;
(iv) eliminating the normalized time between the diag-
onal component of the normalized internal stress tensor
type and normalized internal energy per unit volume for
various given positions, one can obtain hysteresis type
e�ects by numerical simulations. These e�ects are di�er-
ent for the Oξ and Oη directions. For the same η, the
dynamics of the hysteresis cycle are given in Fig. 3a�c.
For the same ξ, such a tendency is more emphasized for
small η (Fig. 3d � hysteresis cycle), while for bigger η it
vanishes (Fig. 3f � absence of hysteresis cycle).

6. Conclusions

The main conclusions of the present paper are as fol-
lows:

i) assuming that the particle movements of a complex
�uid occur on continuous but non-di�erentiable
curves, the speci�c momentum, states density and
internal energy conservation laws are obtained;

ii) for irrotational motion the chaoticity, either
through turbulence in the fractal hydrodynam-
ics approach, or through stochasticization in the
Schrödinger type approach, is generated only by
the non-di�erentiability of the movement's trajec-
tories of the complex �uid entities;

iii) by numerical simulations using the FHM, the gen-
eration of structures in complex �uid by means
of solitons packet solutions, the symmetry of the
velocity �eld with respect of symmetry axis of a
space-time Gaussian and vertices at the structures
periphery of the velocity �eld are obtained;

iv) by numerical simulations using the FHM and inter-
nal energy per unit volume conservation law, one

Fig. 3. (a)�(f) The dependences of the normalized in-
ternal stress tensor type σ on the normalized inter-
nal energy per unit volume Θ for ξ = 0.1; η = 0.5;
τ = 0−1 (a), ξ = 0.6; η = 0.5; τ = 0−1 (b), ξ = 0.9;
η = 0.5; τ = 0−1 (c), ξ = 0.5; η = 0.3; τ = 0−1 (d),
ξ = 0.5; η = 0.7; τ = 0−1 (e), ξ = 0.5; η = 0.9;
τ = 0−1 (f).

can obtain hysteresis type e�ects for various given
positions (dynamics of hysteresis cycles).
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