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We show the special dynamic characteristic of Gaussian quantum discord, exhibited by two-mode Gaussian
symmetric squeezed thermal states (STS) in continuous-variable (CV) systems with a common non-Markovian
environment, is de�nitely di�erent from Markov processes. We demonstrate that Gaussian quantum discord can
be created whenever the information �ow from environment back to the system. We also show that the rate of
decrease for Gaussian quantum discord is related to the coupling constant. We discover that the initial value of
Gaussian quantum discord is determined by the average number of thermal photons of the system.
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1. Introduction

Quantum correlations (QCs), seminally quanti�ed by
quantum discord (QD), are a fundamental resource for
quantum information processing (QIP) [1]. In the last
two decades, people believed that entanglement can char-
acterize QCs, however with some new discovery people
found that entanglement was only one kind of QCs and
could not represent all nonclassical correlations [2]. Now
a widely acceptable concept to measure QCs is quan-
tum discord (QD) which was introduced by Ollivier and
Zurek [3]. QD is de�ned as the mismatch between two
natural quantum extensions of classically equivalent ex-
pression of the mutual information in a bipartite state.
With a variety of studies it has been known that QD

has a signi�cant application in deterministic quantum
computation with one pure qubit (DQC1) [4, 5] and can
be used to better understand the quantum phase transi-
tion [6, 7]. It also can be used to measure the QCs be-
tween relatively accelerated observers [8, 9]. In recently
years the notion of discord is extended to the domain of
bipartite quantum CV systems [10�11] in which QD is
called GQD.
In the literature the dynamic of open quantum sys-

tems [12, 13] is often considered in a Markov process
which is described by a master equation with Lindblad
structure [14, 15]. However, in realistic physical systems
Lindblad master equations are derived just under a num-
ber of drastic simpli�cations. So many methods have
been devoted to de�ne non-Markovianity in open quan-
tum systems [16, 17] and to quantify the degree of non-
Markovian behavior [18�20] recently.
In discrete systems some important results for QD

in non-Markovian evolution have been mentioned in
Refs. [21�23], but in CV systems few discuss has been
made for GQD in non-Markovian environments. In this
paper we analyze the dynamic of GQD in a CV system
for a non-Markovian process. By evaluating the evolution
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of GQD, we �nd that GQD can be created by the fea-
ture of non-Markovianity and we reveal the relationship
between GQD and some important parameters.
The paper is structured as follows. In Sec. 2 the de�ni-

tion of GQD and its expression in STS are reviewed. In
Sec. 3 the de�nition of non-Markovianity for a CV system
that we use in this paper is described. In Sec. 4 we show
the dynamic of GQD of a two-mode Gaussian symmet-
ric STS in a common non-Markovian reservoir with zero
temperature. Finally, In Sec. 5 we draw our conclusions.

2. GQD of two-mode squeezed thermal states

The quantum mutual information between two subsys-
tems A and B in a state ρAB is de�ned as

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (1)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy
of an arbitrary state ρ and ρA(B) = TrB(A)ρAB is the re-
duced density operator describing the state of A(B). An
other expression for the mutual information de�ned via
a measurement-based conditional density operator is

JA(ρAB) = max
{
∏

i}
{S(ρA)−

∑
i

piS(ρA|i), (2)

where {
∏
i} denotes a complete set of positive operator-

valued measure (POVM) performed on the subsystem
B and ρA|i = TrB(ρAB

∏
i)/pi is the remaining state

of subsystem A after the measurement with probability
pi = TrAB(ρAB

∏
i). The mismatch between (1) and (2)

is de�ned as A QD [2, 3]

DA(ρAB) = I(ρAB)− JA(ρAB). (3)

Analogously, B QD is de�ned where the roles of A and
B are swapped.
Now a Gaussian version of QD is de�ned [10, 11] in

an bipartite CV system. We restrict ρAB to a two-mode
Gaussian state whose covariance matrix can be trans-
formed in a standard form

σAB =

(
A C

CT B

)
(4)

with A = diag(a, a), B = diag(b, b), and C = diag(c, d).
The quantities I1 = detA, I2 = detB, I3 = detC,
and I4 = detσ are referred to as symplectic invariants
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for they are invariant under local symplectic transforma-
tions. Because of JA(ρAB) and DA(ρAB) are invariant
under local unitary transformation [2, 3], we can extend
A QD to the standard form of a general two-mode Gaus-
sian state [10, 11] based on the minimization of the mis-
match I(ρAB) − JA(ρAB) over single-mode generalized
Gaussian measurements on subsystem B as follow

CA(ρAB) = h(
√
I2)− h(

√
d−)− h

√
d+)

+ inf
σM

h(
√

detσA), (5)

where h(x) = (x + 1
2 ) ln(x + 1

2 ) − (x − 1
2 ) ln(x − 1

2 ),
d± are the symplectic eigenvalues of ρAB which are ex-

pressed by d2
± = ∆±

√
∆2−4I4
2 with ∆ = I1 + I2 + 2I3,

and σM is the covariance matrix of single-mode Gaus-
sian states for Gaussian measurement on subsystem B,
σA = A−C(B + σM )−1CT [25] is the covariance matrix
of the subsystem A after measurement. In this paper,
we will focus on the relevant subclass of two-mode STSs
with generic state

ρ = V (r)ρ1 ⊗ ρ2V
+(r), (6)

where V (r) = er(a
+b+−ab) is the two-mode squeezing op-

erator and ρi(i = 1, 2) is given by ρi =
∑
nN

n
i (1 +

Ni)
−n−1|n〉i〈n| with Ni is the average number of ther-

mal photons. For the case of STS, we can obtain the
diagonal matrix elements which de�ne A, B, and C

a = (Nr +
1

2
) +N1(1 +Nr) +N2Nr, (7)

b = (Nr +
1

2
) +N2(1 +Nr) +N1Nr, (8)

c = −d = (1 +N1 +N2)
√
Nr(1 +Nr), (9)

where Nr = sinh2 r. The Gaussian A QD for the generic
bipartite STS then can be written as

CA(ρAB) = h(
√
I2)− h(

√
d−)− h(

√
d+)

+h(

√
I1 + 2

√
I1I2 + 2I3

1 + 2
√
I2

). (10)

By exchanging I1 ↔ I2, Gaussian B QD is obtained
where Gaussian measurements are performed on subsys-
tem A. In the following part, we will use Gaussian A QD
as GQD.

3. A non-Markovianity measure for

continuous-variable systems

Some measures have been introduced for detecting
non-Markovianity of an evolution [16�20]. In this pa-
per we use the measurement which is �rst introduced by
Breuer et al. [8], and extended to CV systems by Vasile
et al. [24]. In this measurement the information which
�ows between the system and its environment is treated
as the key feature of non-Markovianity.
The fundamental idea of the measure is that a Marko-

vian process tends to reduce the distinguishability be-
tween any two states continuously, contrarily a non-
Markovian process means the increasing of the distin-
guishability. The interpretation of this phenomenon is

that when information �ows from the system to its envi-
ronment, the distinguishability of states is decrease and
when it reverses, the distinguishability arises. So the
measure is based on the trace distance [1] of two quan-
tum states which describes the probability of successfully
distinguishing the states. The trace distance is de�ned
as

D(ρ1, ρ2) =
1

2
tr|ρ1 − ρ2|, (11)

where |A| =
√
A+A. In a Markovian dynamic the trace

distance is always monotonic decrease, namely

D(ρ1(τ + t), ρ2(τ + t)) ≤ D(ρ1(t), ρ2(t)). (12)

When monotonicity is not satis�ed it means that there
are intervals of time for which the states become more
distinguishable compared to previous instants, this char-
acterizes a non-Markovian evolution. In a generic CV
state there is no analytic expression for the trace dis-
tance, but replaceable signatures can be employed within
the same spirit, such as the �delity

F (ρ1, ρ2) = tr
√√

ρ1ρ2
√
ρ1. (13)

Which is a good candidate of taking the role of the trace
distance in a CV system. That is in a CV system,

F (ρ1(τ + t), ρ2(τ + t)) ≤ F (ρ1(t), ρ2(t)) (14)

holds for a Markovian process, whenever it fails there is
a non-Markovian process.

In this paper we consider the dynamic described by the
phenomenological equation with a single decay channel
in Lindblad form with a time-dependent damping rate
γ(t) as follow

dρ

dt
= α

γ(t)

2
(2aρa+ − a+aρ− ρa+a), (15)

where a is the annihilation operator. The function γ(t)
determined by the spectral density J(w) of the reservoir.
Any Gaussian state evolving according to Eq. (15) re-
mains Gaussian and the covariance matrix evolving in
a zero-temperature environment (the average number of
thermal photons for environment Ne = 0) is as follow

σ(t) = e−x(t)σ(0) + [1− e−x(t)]
I

2
, (16)

where x(t) = α
∫ t

0
2γ(s)ds, and α is a coupling con-

stant. It has been proven [18,24] that whenever γ(t) < 0,
Eq. (12) or (14) is not satis�ed and we can say the evo-
lution is non-Markovianity. So if there exists some neg-
ativity intervals of γ(t), it means in the physical process
Eq. (14) fails for certain times and then Eq. (15) describes
a non-Markovian process.

4. Behavior of Gauss discord with

non-Markovianity

In this section we study the behavior of GQD of a
two-mode Gaussian STS in a common non-Markovian
reservoir with zero-temperature which is described in the
previous section. We analyze the case of symmetric STS
in which N1 = N2. In example, we consider the damping
rate is
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γ(t) =
1

2

{
e−t/5 sin t, if t < 5π/2

e−π/2, if t ≥ 5π/2
, (17)

which is characterized by only one interval of negativity,
[π, 2π] for non-Markovianity, N1 = N2 = 10 and r = 2.
We plot the evolution of GQD with α = 0.5 in Fig. 1b. In
contrast, the situation for a Markov process is exhibited
in Fig. 1a with the damping rate is

γ(t) =
1

2

{
e−t/5 sin t, if t < π

e−π/2, if t ≥ π
. (18)

Fig. 1. Evolution of GQD in (a) Markov case and in
(b) non-Markovian case with N1 = N2 = 10, r = 2 and
α = 0.5.

Fig. 2. The detail of the rising time of GQD in non-
Markovian case.

We can see that GQD monotonically decreases in a
Markov process, but it is di�erent in a non-Markov case.
During the decay GQD has a rise suddenly and then de-
creases to zero eventually. By observing the rising time
in details in Fig. 2, we �nd it is just the time when γ(t)
is negativity. We think that the physical explanation for
the rise is the �ow of information from the environment

Fig. 3. Evolution of GQD with (a) N1 = N2 = 10,
r = 2, α = 0.5 and (b) the detail of the rising time
in non-Markovian case where γ(t) is in the form of Eq.
(19).

Fig. 4. Evolution of GQD as a function of α and t.

Fig. 5. Evolution of GQD as a function of Ni and t.
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back to the system [18, 24]. Then we adjust the damping
rate

γ(t) =
1

2
×

{
e−t/5 sin t, if t < 9π/2

e−π/2, if t ≥ 9π/2
, (19)

which has two intervals of negativity, [π, 2π] and [3π, 4π].
In Fig. 3a we can see there are two rises for GQD during
the course and the happening time which is showed in
Fig. 3b is also the exactly time whenever γ(t) is nega-
tivity. So we conclude that once the information �ows
back from environment to system which features non-
Markovianity of system , it causes a rise for GQD. In
other word, quantum correlations are created due to non-
Markovianity.
We study the in�uence which is caused by the coupling

constant α and the average number of thermal photons
Ni (i = 1, 2) in symmetric STS respectively. The evolu-
tion of GQD as a function of α and t can be seen in Fig. 4.
We discover that GQD falls slower when α is smaller. In
Fig. 5 where we consider r = 2, α = 0.5 and γ(t) is in
the form of Eq. (17), we �nd that with the value of Ni
becomes larger, GQD gets a smaller initial value.

5. Conclusions

In this paper, the dynamic of GQD of a CV system
in a non-Markovian process is studied. We have showed
the behavior of GQD of a two-mode Gaussian symmetric
STS in a common non-Markovian reservoir with zero-
temperature. We have found that in a non-Markovian
case GQD can be created during the evolution, which in-
dicates that QCs can be produced in a non-Markovian
environment. We have also found that the rising time
is exactly whenever the information �ows from the envi-
ronment back to the system. The result will be very sig-
ni�cant for a practical purpose. Finally we have revealed
the in�uence of GQD which is caused by the coupling
constant α and the average number of thermal photons
Ni respectively. We have found that α a�ects the rate of
decrease and the initial value is associated with Ni.
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