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Shape Limit in Triangular Spiral Tilings
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Phyllotaxis is the study of arrangements of leafs and �orets. The topology of triangular spiral (multiple) tilings
with opposed parastichy pairs is intimately related to the phyllotaxis theory and continued fractions. It is shown
that, if the divergence angle of the genetic spiral is given as a quadratic irrational and �xed, then the limit set of
the shape parameters of triangular tiles, as the parastichy numbers tend to in�nity, is a �nite set. In particular,
the limit is the golden section if the divergence angle is `ultimately golden'.
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1. Introduction

Phyllotaxis [1] is an interdisciplinary subject related
to physics, biology, and mathematics [2, 3], where the

golden section τ = (1 +
√
5)/2, the Fibonacci num-

bers, and continued fraction expansions play important
roles [4, 5]. In [6], a quasi-crystalline structure is ob-
served in a circular defect line in the parastichy transition
of spiral phyllotaxis. Recently, there are intensive studies
on the dynamical models that generate spiral phyllotaxic
patterns [7�10], as well as geometric approaches on the
spiral phyllotaxis [11�13].

Fig. 1. Triangular spiral tilings with vertex sets
{zj}j∈Z, z = r e2π iτ , τ = (1 +

√
5)/2. The number

j denotes the point zj ∈ C. (a) r = 0.6780, opposed
parastichy pair {2, 3}. (b) r = 0.9328, opposed paras-
tichy pair {5, 3}.

One of the most simpli�ed mathematical models of spi-
ral phyllotaxis is the triangular spiral tiling that admits
transitive action of a similarity transformation group,
with no rotational symmetry, Fig. 1. In the previous
paper [14], we have shown that the parameter space Pv
of the generators z = re iθ of triangular spiral (multi-
ple) tilings of multiplicity |v| 6= 0 with opposed paras-
tichy pairs is a nowhere dense subset of the unit disk
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Fig. 2. The set P1 ∪ P−1 of generators for triangu-
lar spiral tilings with opposed parastichy pairs. The
arcs Pm,n,1 and Pm,n,−1, de�ned in [14], are denoted by
(m,n).

D, which is a countable family of real algebraic curves
parametrized by the divergence angle θ, see Fig. 2,
whereas the parameter space Qv for triangular spiral
(multiple) tilings with non-opposed parastichy pairs is a
dense subset of D, being a countable union of real alge-
braic curves parametrized by the plastochrone ratio 1/r.
In Pv, the opposed parastichy pair is described by the
continued fraction expansion of θ/2π. The union ∪vPv is
a dense subset of D.
In this paper we describe the relationship between the

continued fraction of the divergence angle and the trian-
gular spiral (multiple) tilings with an opposed parastichy
pairs, and study the limit set Ω(θ) of the `shape param-
eters' of tiles, as r → 1, of triangular spiral multiple
tilings with opposed parastichy pairs. It is shown that if
θ/2π is a quadratic irrational, then Ω(θ) is a �nite set of
quadratic irrationals. It is known that most divergence
angles θ of the spirals observed in plant phyllotaxis are
written in the form θ = 2π(aτ + b)/(cτ + d), for some
a, b, c, d ∈ Z with ad − bc = 1 [5]. If it is the case, then
we have Ω(θ) = {−τ,−1/τ}.
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Fig. 3. Paper-folding for the tiling Fig. 1b.

Fig. 4. Triangular spiral tiling generated by
(0.9965) exp(2π i · τ), τ = (1 +

√
5)/2, with an

opposed parastichy pair {8, 13}. (a) Global view
around the origin. (b) Local view around the tile T0.

In the International Conference of Quasicrystals,
Krakow, September 2013, we presented paper-folding
sheets that build spiral towers whose top-down views are
triangular tilings, Fig. 3. See [14, 15] for some back-
grounds in �gurative arts as applications of phyllotaxis
and quasicrystals.

2. Triangular spiral tilings and continued

fractions

For x ∈ R, let

x = a0 +
1

a1 +
1

a2+...

= [a0; a1, a2, . . .]

be its continued fraction expansion [16, 17], where
a0 ∈ Z, ai ∈ N, i ≥ 1. De�ne the sequences {pj}j≥−1
and {qj}j≥−1 by p−1 = 1, p0 = a0, p1 = a0a1 + 1,
pj+1 = aj+1pj + pj−1, j ≥ 1; q−1 = 0, q0 = 1, q1 = a1,
qj+1 = aj+1qj + qj−1, j ≥ 1. In this paper we denote
by pj,k = kpj + pj−1, and qj,k = kqj + qj−1 for j ≥ 0,
0 ≤ k ≤ aj+1. The fraction pj/qj = [a0; a1, . . . , aj ],
j ≥ 0, is called a principal convergent of x, and pj,k/qj,k =
[a0; a1, . . . , aj , k], j ≥ 0, 0 < k < aj+1, is called an
intermediate converegent of x. Note that pj,0 = pj−1,
qj,0 = qj−1, pj,aj+1

= pj+1, qj,aj+1
= qj+1.

A pair of rational numbers a
m ,

b
n is called a pair of

convergents of x ∈ R if |bm − an| = 1 and either a
m <

x < b
n or b

n < x < a
m . It is known that if a

m ,
b
n is a pair

of convergents of x, then either a = pj , m = qj , b = pj,k,

m = qj,k with j even, or a = pj,k, m = qj,k, b = pj ,
n = qj with j odd, and 0 < k ≤ aj+1.
Let I = (−π, π] be a half-open interval, and ∆ = ∆+∪

∆−, where ∆+ = {(θ1, θ2) ∈ I2 : 0 < θ1 < θ2 + π < π},
∆− = {(θ1, θ2) ∈ I2 : 0 < θ2 < θ1 + π < π}. Denote by
[[x]] an integer closest to x ∈ R such that − 1

2
< 〈x〉 :=

x − [[x]] ≤ 1
2
. Denote a line segment with the endpoints

ζ1, ζ2 ∈ C by `(ζ1, ζ2), and a triangle with the vertices
ζ1, ζ2, ζ3 ∈ C by 4(ζ1, ζ2, ζ3).

Proposition 1. Let m,n > 0 be relatively prime inte-
gers, and θ ∈ R. If

(
2π〈mθ2π 〉, 2π〈

nθ
2π 〉
)
∈ ∆+, then there

exists a unique 0 < r < 1 such that for z = re iθ,

T = {Tj = 4(zj+m, zj+n, zj)}j∈Z (1)

is a triangular spiral multiple tiling of C∗ = C \ {0} of
multiplicity v = (n〈mθ2π 〉 −m〈

nθ
2π 〉)/2π.

Proof. If
(
2π〈mθ2π 〉, 2π〈

nθ
2π 〉
)
∈ ∆+, T is a (multiple) tiling

if and only if zm+n lands on the line segment `(zm, zn).
So r is determined as a root of the equation f(r) = 0
where

f(r) := rm sinnθ − rn sinmθ + sin(m− n)θ, (2)

by [14, Lemma 4]. The existence and uniqueness of the
root r ∈ (0, 1) follows from the observation that f(r) is
a monotone decreasing function of 0 ≤ r ≤ 1, such that
f(0) > 0 > f(1).

The integersm,n > 0 in Proposition 1 are called an op-
posed parastichy pair of T . The case

(
2π〈mθ2π 〉, 2π〈

nθ
2π 〉
)
∈

∆− shall also have a triangular spiral multiple tiling,
which we omit here.
The following Proposition follows from [14, Proposi-

tion 3]. Denote the principal argument of z ∈ C by
−π < Arg(z) ≤ π.

Proposition 2. Let z = re iθ, 0 < r < 1, θ ∈ R, and
m,n > 0. Suppose that Arg(zn) < 0 < Arg(zm), and that
(1) is a triangular spiral multiple tiling of multiplicity
v > 0. Then there exist integers a, b > 0 such that a/m <
b/n is a pair of convergents of x = θ/2vπ, and we have
v = (n〈mθ2π 〉 −m〈

nθ
2π 〉)/2π = (bm− an)/2π.

Proposition 3. Let θ ∈ R and v ∈ N. Suppose that
a/m < b/n is a pair of convergents of θ/2vπ, and m,n >
0 are su�ciently large. Then there exists a unique 0 <
r < 1 such that for z = re iθ, (1) is a triangular spiral
multiple tiling of C∗ of multiplicity v.

Proof. Ifm,n are large, then a/m, b/n are close to θ/2vπ,
and so we have

(
2π〈mθ2π 〉, 2π〈

nθ
2π 〉
)
∈ ∆+. Proposition 1

is applied to obtain the tiling (1). The multiplicity is
obtained from [14, Proposition 3].

3. Shape limit in triangular spiral tilings

Let v > 0, θ ∈ (−vπ, vπ]. In this section we suppose
that θ/2vπ is a �xed irrational number. In the contin-
ued fraction expansion of x = θ/2vπ, we consider the
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sequences qj and qj,k, j > 0, 0 ≤ k ≤ aj+1, as de�ned
in Sect. 2. For each j > 0 and 0 ≤ k ≤ aj+1, denote by
aj,k/mj,k < bj,k/nj,k a pair of convergents of x = θ/2vπ
such that {mj,k, nj,k} = {qj , qj,k}. Suppose that j is suf-
�ciently large that

(
2π〈mj,kθ

2π 〉, 2π〈
nj,kθ
2π 〉

)
∈ ∆+. Let

0 < r = rj,k < 1 be the root of the Eq. (2), and
zj,k = rj,k e

iθ. Then we obtain a (multiple) tiling (1)
with an opposed parastichy pair {m,n} = {mj,k, nj,k}.

Lemma 4. Arg(z
qj,k
j,k )→ 0 as j →∞.

Proof. It is known that∣∣∣∣ θ

2vπ
− pj
qj

∣∣∣∣ ≤ C

q2j

where the constant C > 0 is independent of j. Hence∣∣∣Arg(zqj,kj,k )
∣∣∣ ≤ ∣∣Arg(z

qj
j )
∣∣ = 2π

∣∣∣∣〈qjθ2π 〉
∣∣∣∣

= 2π

∣∣∣∣qjθ2π − vpj
∣∣∣∣ ≤ 2Cvπ

qj
→ 0 (3)

as j →∞.

Lemma 5. Let v > 0, θ ∈ (−vπ, vπ], and suppose
that θ/2vπ is an irrational number. Then, the an-
gles ∠(1, zmj,k

j,k , z
nj,k

j,k ) and ∠(zmj,k

j,k , z
nj,k

j,k , 1) tend to 0 as
j →∞.

Proof. By [14, Lemma 4], the four points z
mj,k

j,k , 0, z
nj,k

j,k ,

1 lie on a same circle. Thus we have ∠(1, zmj,k

j,k , z
nj,k

j,k ) =

∠(1, 0, znj,k

j,k ) = Arg(z
nj,k

j,k ) → 0 as j → ∞, and similarly

∠(zmj,k

j,k , z
nj,k

j,k , 1) = ∠(zmj,k

j,k , 0, 1) = Arg(z
mj,k

j,k ) → 0 as
j →∞.

Lemma 6. Suppose that the coe�cients {aj}j≥0 in the
continued fraction expansion θ/2vπ = [a0; a1, a2, . . . ] are
bounded. Then we have

0 < 1− rj,k ≤
C

m3
j,k

,

where C > 0 is a constant independent of j, k.

Proof. We shall adopt a notation ϕ = O(m−s) when
there exists a constant C independent of j, k such that
|ϕ| ≤ C/ms

j,k. Since the coe�cients aj are bounded,

the ratios nj,k/mj,k are also bounded, so we may write
O(m−s) = O(n−s). We have

sinmθ = 2π〈mθ
2π
〉 − (2π)3

6
〈mθ
2π
〉3 +O(m−5)

= O(m−1)

by (3), and

sinnθ − sinmθ + sin(m− n)θ

= 4π3〈mθ
2π
〉〈nθ
2π
〉〈 (m− n)θ

2π
〉+O(m−5)

= O(m−3),

so

sin(m− n)θ
sinmθ − sinnθ

= 1 +O(m−2),

where we denote by m = mj,k, n = nj,k for the sake of
simplicity. Since 0 < r = rj,k < 1 is a root of (2), we
have limj→∞ r

mj,k

j,k = limj→∞ r
nj,k

j,k = 1, and

r
mj,k

j,k = 1 +O(m−2), r
nj,k

j,k = 1 +O(m−2). (4)

Let tj,k := 1− rj,k. Then we have tj,k = O(m−3) by (4),
which completes the proof.

Suppose that θ/2vπ is a quadratic irrational. Then it
has a periodic continued fraction expansion

θ

2vπ
= [a0; a1, a2, . . . ]

= [a0; a1, . . . , aj0 , b1, . . . , bd]

= [a0; a1, . . . , aj0 , b1, . . . , bd, b1, . . . , bd, . . . ].

We may assume that j0, d are even, by choosing larger
ones if necessary. For each 1 ≤ h ≤ d, let

ωh = [bh; bh+1, . . . , bd, b1, . . . , bh]

be a purely periodic continued fraction.
Let R(θ, v) be the set of ratios (z

nj,k

j,k − 1)/(z
mj,k

j,k − 1)
for j > 0 and 0 < k ≤ aj . Let

Ω(θ, v) := Ω(R(θ, v))

be the limit set, i.e., the set of the accumulation points,
of R(θ, v).

Theorem 7. Suppose that θ/2vπ is a quadratic irra-
tional. Then we have

Ω(θ, v) = {(ωj − k)(−1)
j

: 0 < j ≤ d, 0 < k ≤ bj}. (5)
In particular, it is a �nite set of quadratic irrationals.

Proof. Since θ/2vπ is a quadratic irrational, there exists a
constant C1, C2 > 0, independent of j > 0, 0 < k ≤ aj+1,
such that

C1

q2j,k
<

∣∣∣∣pj,kqj,k
− θ

2vπ

∣∣∣∣ < C2

q2j,k
.

This implies that

C1

mj,k
<

∣∣∣∣〈mj,kθ

2vπ
〉
∣∣∣∣ < C2

mj,k
.

We have
z
nj,k

j,k − 1

z
mj,k

j,k − 1
=
−1 + rn cosnθ + irn sinnθ

−1 + rm cosmθ + irm sinmθ

=
−1 + 1 +O(m−2) + i(2π〈nθ2π 〉+O(m−2))

−1 + 1 +O(m−2) + i(2π〈mθ2π 〉+O(m−2))

=
2π i〈nθ2π 〉+O(m−2)

2π i〈mθ2π 〉+O(m−2)

=
2π i〈nθ2π 〉(1 +O(m−1))

2π i〈mθ2π 〉(1 +O(m−1))

=
〈nθ2π 〉
〈mθ2π 〉

(1 +O(m−1)),
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where we denote by m = mj,k, n = nj,k. Thus it is
written as

z
nj,k

j,k − 1

z
mj,k

j,k − 1
=

(
〈 qj,kθ2vπ 〉
〈 qjθ2vπ 〉

)(−1)j

(1 +O(q−1)).

By using the continued fractions, we have

〈qj,kθ
2vπ
〉/〈 qjθ

2vπ
〉 = −[aj+1 − k, aj+2, aj+3, . . . ]

= −(ωj − k)

for j su�ciently large, and 0 ≤ k ≤ aj+1. Thus we obtain
Eq. (5).

It is known that most spirals in plant phyllotaxis
have divergence angles θ belonging to a class that might
be called `ultimately golden', or written as θ/2π =
[a0; a1, a2, . . . ] where aj = 1 for su�ciently large j [5].
This is equivalent to the existence of a, b, c, d ∈ Z, such
that θ/2π = (aτ + b)/(cτ + d) and ad− bc = 1.

Corollary 8. Suppose that θ/2vπ has a continued frac-
tion expansion θ/2vπ = [a0; a1, a2, . . .] such that aj = 1
for su�ciently large j. Then Ω(θ, v) = {−τ,−1/τ}.

Proof. The golden section has a purely periodic continued
fraction expansion τ = [1; 1, . . . ] = [1; 1, 1], and

〈qj,1θ
2vπ
〉/〈 qjθ

2vπ
〉 = −[0; 1, 1, . . . ] = −1

τ

for any j.

Figure 4 shows a triangular spiral tiling generated by
z = re2π iτ , r = 0.9965, τ = (1+

√
5)/2, with an opposed

parastichy pair {8, 13}, and the ratio (z8 − 1)/
(z13 − 1) = −1.348 + 0.857i . If we �x the divergence
angle 2πτ and consider larger Fibonacci numbers as an
opposed parastichy pair, for example {55, 89}, then we
have r = 0.999989, and so the ratio (z55− 1)/(z89− 1) =
−1.61208 + 0.13355i gets closer to −τ = −1.618.
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