
Vol. 126 (2014) ACTA PHYSICA POLONICA A No. 2

Proceedings of the 12th International Conference on Quasicrystals (ICQ12)

Periodic Series of Peaks in Di�raction Patterns

of Aperiodic Structures

J. Wolnya, B. Kozakowskia, P. Kuczeraa,b, L. Pytlika, R. Strzaªkaa and A. Wneka

aFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
bLaboratory of Crystallography, ETH Zurich, Switzerland

Quasicrystals are aperiodic structures with no periodicity both in direct and reciprocal space. The di�raction
pattern of quasicrystals consists however of the periodic series of peaks in the scattering vector space. The intensities
of the peaks of all series reduced in a proper way build up the so-called envelope function common for the whole
pattern. The Fourier transformed envelope gives the average unit cell which is the statistical distribution of atomic
positions in physical space. The distributions lifted to high dimensions correspond to atomic surfaces � the basic
concept of structural quasicrystals modeling within higher-dimensional approach.
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1. Introduction

Quasicrystals were introduced to physics and materials
science in 1984 [1, 2], two years after Shechtman's dis-
covery. One of the most distinguishing features of qua-
sicrystals is their di�raction pattern. The structure of
quasicrystals is aperiodic; however their di�raction pat-
terns contain sharp peaks, which is the proof of their
perfect long-range order. Because of their incompatibil-
ity with translational long-range order observed for peri-
odic crystals, the patterns exhibit point symmetries for-
bidden in classical crystallography (e.g. 5-fold). The
reverse reasoning, that is that the structure aperiodicity
implies pattern aperiodicity is not true. We show that
the periodicities in the di�raction patterns of aperiodic
structures yield important information about their struc-
ture. In this paper three structure models will be ana-
lyzed: a 1D quasicrystal � the Fibonacci chain, a 2D
quasicrystal represented by the rhombic Penrose tiling,
and an incommensurately modulated structure with har-
monic modulation.

2. Di�raction pattern of the Fibonacci chain

An example of a 1D quasicrystal is represented by the
Fibonacci chain of two segments L = τ and S = 1.
Its di�raction pattern (Fig. 1a) contains only the Bragg
peaks arranged aperiodically. However the aperiodic pat-
tern is a superposition of an in�nite number of peri-
odic series of peaks [3]. Three such series, marked by
m = 0, 1 2, are highlighted in Fig. 1a. Each series
has the same periodicity (here k0 = 2π/a0 ≈ 4.547,
where a0 = 1/τ2 ≈ 1.382 is an average distance be-
tween points in the chain, τ ≈ 1.618 is the golden mean).
The shift between two series is constant and equal to
k1 = k0

√
5 = 2πτ ≈ 10.17. Every peak position k can be

reached by using only two periods: k1 and k0. An inter-
esting feature of the pattern appears when we subtract
the k1 component from the coordinates of the peaks. The
peak maxima form a curve called �envelope� (Fig. 1b).

Fig. 1. Di�raction pattern of the Fibonacci chain.
(a) Three in�nite periodic series of peaks. (b) The en-
velope function running over the maxima of all peaks is
the result of reducing peak positions by: w = k −mk1.
Three di�erent symbols of points correspond to three
series of peaks from part (a).

3. Average unit cell for the Fibonacci chain

The envelope curve is the square of a Fourier transform
of an average unit cell (AUC). The AUC is a distribu-
tion P (u) of reduced atomic positions u = x mod (a0),
where x is the atomic position in physical space (Fig. 2a).
Conversely, we can determine the AUC directly from the
di�raction pattern and its envelope curve, and obtain
the atomic positions. Due to the phase recovery problem
this is not straightforward. For a centrosymmetric struc-
ture, the phase takes only two values: 0 or π. The phase
changes its value every time the envelope function from
Fig. 1b reaches zero. This simple rule allows us to obtain
the distribution of atomic positions (Fig. 2a) without the
necessity to �t the phase values iteratively.

4. TAU2-scaling

Usually the modulation wave vector q is used to index
peak positions: q = k/τ [4�6].
To reconstruct the whole pattern the P (u, v) distri-

bution has to be determined where v is a reduced posi-
tion with respect to the reference frame with period of
a0τ [4�6]. This distribution is non-zero only along a cer-
tain line (Fig. 2b). After a proper shift (dashed line in
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Fig. 2b) the equation of the line is v = −τ2u + b. The
factor −τ2 is characteristic for all decagonal and icosahe-
dral quasicrystals; (this is called TAU2-scaling). It gives
an immediate result for the peak's phase (0 or π): ηq0b
(where η is an integer) � on condition that P (u, v) is
shifted to the points of symmetry of the reference frame.

Fig. 2. (a) The AUC for a Fibonacci chain obtained as
a product of the inverse Fourier transform of the enve-
lope function of the structure factor (theoretical shape).
(b) The AUC is non-zero only along a line segment.

5. Rhombic Penrose tiling

The rhombic Penrose tiling is a paradigmatic example
of a 2D quasiperiodic structure. To index all peaks in the
di�raction pattern one needs to choose two 2D primary

Fig. 3. Di�raction pattern of the rhombic Penrose
tiling. The basis vectors k1, k2, q1, q2 used for the
construction of the AUC are shown.

Fig. 4. Expanded AUC of the rhombic Penrose tiling
constructed with: (a) basis vectors k1 ≈ (0, 30.77), k2 ≈
(31.16, 10.13) and (b) basis modulation vectors. Set of
basis vectors indicated in Fig. 3. Thick lines correspond
to the rhombic Penrose tiling quasilattices, thin lines to
the lattice related to the AUC. Overlapping pentagons
in gray.

wave vectors k1 and k2, and two 2D modulation vectors
q1 and q2: qi = ki/τ (Fig. 3). The peak position is
an integer linear combination of these four basis vectors.
The di�raction pattern is a set of strictly periodic series
of di�raction peaks. The expanded AUC for the rhombic
Penrose tiling is shown in Fig. 4. A single AUC con-
sists of four overlapping pentagons (two large ones and
two small ones) which are the equivalents of pentagonal
atomic surfaces in perpendicular space [7].

Fig. 5. TAU2-scaling of AUCs of the rhombic Penrose
tiling shown in Fig. 4. (a) Scaling relation for (ux, vx)-
and (b) (uy, vy)-coordinates.

6. 1D incommensurately modulated structure

Yet another example of a modulated structure is a one-
dimensional periodic structure with an incommensurate
harmonic modulation. The position of an atom in such
a structure is given by: xn = na + A sin(q0na), with a
being the base period, A the modulation amplitude, q0
the modulation vector (incommensurate with respect to
the base period), n an index numbering the atoms. The
di�raction pattern consists of a periodic series of di�rac-
tion peaks and satellite peaks (Fig. 6a). The positions

Fig. 6. (a) Di�raction pattern of a 1D incommensu-
rately modulated structure. The envelopes of the main
peaks and a few nearest satellites are with marked.
(b) AUC of a 1D harmonically modulated structure.
(c) Correlation trace of AUCs derived for two wave vec-
tors: k0, q0 = k/τ for a structure with incommensurate
harmonic modulation.
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of periodic and satellite peaks are incommensurate in re-
lation to each other. Figure 6b demonstrates this rela-
tionship along with the appropriate envelope functions.
The observed periodicity allows us to construct an AUC
for the wave vector k0 = 2π/a and the incommensurate
wave vector q0 [8]. The correlation between these two
vectors is shown in Fig. 6c. It is not linear as distinct
from quasicrystals.

7. Periodicities of the di�raction pattern

In Fig. 7 the idea of higher-dimensional description
(the cut-and-project method) is schematically shown.
The nodes of a 2D periodic square lattice (with param-
eter A) restrained to the projection strip are projected
onto the physical-space direction x‖.

Fig. 7. The Fibonacci chain represented as a projec-
tion of 2D square direct space lattice onto the physical
space (x‖). The segments in red are the atomic surfaces
known from cut-and-project method and correspond to
line segments from Fig. 2a called AUC.

Fig. 8. The di�raction pattern of the Fibonacci chain
represented as a projection of the 2D square reciprocal
lattice onto physical space (k‖). Di�erent symbols of
points correspond to three series of peaks from Fig. 1a.

To fully understand the existence of the two period-
icities in the di�raction pattern we now introduce a 2D
space description. Let us assume a 2D square reciprocal

space lattice with lattice constant K = 2π
A = 2π√

τ2+1
≈

3.30 (Fig. 8). The k1 periodicity implies an in�nite set of
parallel and equidistant lines (marked with solid, dashed
and dotted lines). Here the (1,1) direction in 2D recip-
rocal space was chosen. From Fig. 8 one can explicitly
infer the value of the k1 period, since{

k1x = τk1y
k1y = k1x −K

→

{
k1x = τ2K

k1y = τK

→ k1 =
√
k21x + k21y = 2πτ ≈ 10.17

The k0 periodicity is an in�nite periodic set of points
(open circles along each of the lines). If the inclination
angle α of the lines related to periodicity k1 is prop-
erly chosen (α = 31.72◦ such as tan(α) = 1/τ), the
points related to the periodicity k0 will form a square
lattice. Peak positions (marked with di�erent symbols)
are obtained by projecting the periodic set of points from
each line onto the physical space (k‖). The perpen-
dicular space is spanned along the projection direction
(k⊥). The trace of the envelope function from Fig. 1b is
placed in the perpendicular space (marked in gray seg-
ment dashed lines in Fig. 8). To be more precise, the
structure factor should be considered rather than the in-
tensity. The envelopes are rescaled according to the for-
mula: k⊥ = w/τ3, where w = k‖ mod (k1); they are
centered at each of the parallel lines related to the peri-
odicity k1. The scaling factor in reciprocal space is 1/τ3;
it is the same for both k‖ and k⊥. This clearly follows

from Fig. 8: ∆k⊥/k0 = tanβ = tan(45◦ − α) = 1/τ3.
The intensity of a given peak is de�ned by the values of
the respective envelope function at k⊥ = 0.

8. Correspondence to the high-dimensional

approach

Two characteristic features of the di�raction pattern of
quasicrystals can be easily explained by the construction
in Fig. 8: (1) pattern is in�nitely dense because the set of
lines related to the periodicity k1 is in�nite; (2) the inten-
sities of the peaks with higher k⊥ component are weaker
because the envelope function decays asymptotically.
After transformation to direct space, the square re-

ciprocal lattice transforms into a square lattice and the
Fourier transform of the envelope function of the struc-
ture factor in the perpendicular space produces an atomic
surface (also-called by other names, such as �acceptance
domain� or simply �window�). Such an approach, based
on construction of a square lattice, is the foundation of
the higher-dimensional approach [9�14].

9. Summary

A di�raction pattern can be divided into periodic series
of peaks; this is true for periodic crystals, quasicrystals
and modulated structures (with commensurate or incom-
mensurate modulation). This approach applies to aperi-
odic structures like the Thue�Morse sequence as well [15].
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We use here the periodicity in the wave vector space (re-
ciprocal space) to construct a reference frame in the phys-
ical space. The positions of atoms within a model struc-
ture reduced to one period of a reference frame form the
average unit cell. If the ratio of periodicities of two AUCs
is τ (the ratio of the wave vectors, for which the AUCs
were calculated, is 1/τ), then they are related to each
other by the TAU2-scaling. The TAU2-scaling is a linear
relationship between the non-zero density regions of the
two AUCs with the linear coe�cient equal to (−τ2). This
scaling is representative for all commonly observed qua-
sicrystals and enables us to use it to derive the structure
factor for decagonal quasicrystals (if their structure can
be described as a decorated rhombic Penrose tiling) and
subsequently re�ne a number of quasicrystalline struc-
tures [16].
The occurrence of the periodic series in di�raction pat-

tern holds for any structure and not only quasicrystals.
A series of peaks can be complemented by an envelope
being a Fourier transform of an AUC. The properties of
the envelope make it possible to determine the phases of
the peaks. As this approach is general and well-de�ned in
a mathematical sense it can be used in the re�nement of
more complex structures like proteins, for instance. The
approach works not only for the Bragg peaks but also
for the singular continuous component (which scales in
a fractal way with the number of scattering atoms) as
well as for the absolutely continuous component. From
an experimental point of view the latter is di�use scat-
tering (cf. [17]). Using this approach the full structural
knowledge can be obtained from the di�raction pattern
and not only from the position and intensity of the peaks.
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