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Spatial aperiodicity occurs in various models and materials. Although today the most well-known examples
occur in the area of quasicrystals, other applications might also be of interest. Here we discuss some issues related
to the notion and occurrence of aperiodic order in equilibrium statistical mechanics. In particular, we consider
some spectral characterisations, and shortly review what is known about the occurrence of aperiodic order in
lattice models at zero and nonzero temperatures. At the end some more speculative connections to the theory of
(spin-)glasses are indicated.
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1. Some questions

Aperiodicity (much of the mathematics of which is dis-
cussed in the recent [1]) describes the quasiperiodic order
of quasicrystals, as well as weaker forms of long-range
order. In fact a very famous early, rather speculative,
mentioning, of �aperiodic crystals� already occurred in
Schrödinger's �What is Life?� [2]. That aperiodicity was
a presumed property of chromosomes. The notion of ape-
riodicity gives rise to various questions, three of which I
will discuss here.

Question 1: Aperiodic order as a form of order. How
should one describe �general� long-range order in equilib-
rium systems? In particular how can one give spectral
characterisations thereof, which will be visible in some
kind of di�raction spectrum?

Question 2: Where does aperiodic order come from?
Can one �nd statistical mechanical models of quasicrys-
tals or �weak crystals� in which either ground states or
the Gibbs states display aperiodic order? Is it necessary
to use long-range interactions or can one also obtain this
behaviour with �nite-range interactions? How does this
depend on the dimension?

Question 3: Aperiodic order as a form of disorder.
What can �ndings in the quasicrystal community teach
us about theory of (spin-) glasses [3]? How (dis)ordered
can tilings and tiling models be? Can we learn from
them about materials other than quasicrystals, such as
e.g. (spin) glasses? Or can one compute and obtain ape-
riodic examples which display an interesting Parisi over-
lap distribution (a quantity which was introduced for the
paradigmatic disordered model, spin glasses [4])?

In this contribution I will discuss the above questions
in the technically simple context of statistical mechanical
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lattice models. Although a lot of the theory of aperiodic
order has been developed looking at individual samples,
it makes sense to consider probability measures (ensem-
bles) on those. Ergodic arguments tell us that the be-
haviour of all typical � probability one � samples will
be the same, once the probability measures are spatially
ergodic, and then results easily carry over. Such prop-
erties are said to be �self-averaging�. (In the case when
the probability measure is strictly ergodic, that is, it is
uniquely ergodic � there exists only one translation in-
variant measure � and also minimal � every orbit is
dense �, it is even true that all samples behave the same.
In other words, whereas the ergodic theorem in general
implies that all translation-invariant sets have measure
zero or one, in the strictly ergodic case, such sets are ei-
ther the whole space or the empty set.) For some early
papers developing this point of view for di�raction ques-
tions, see [5, 6].

We consider con�guration spaces Ω = Ω0
Zd

, where
the single-site space Ω0 is �nite, whether 2-valued or
many-valued, as happens in tiling models. Con�gura-
tions, which are the elements of the con�guration space,
are denoted by ω's or σ's. On those Ω 's we consider
translation-invariant probability measures which are ei-
ther ground states � for temperature zero � or Gibbs
measures � at positive temperatures � for some inter-
action. A con�guration often is viewed as a translation
bounded measure (e.g. a Dirac comb) [7].

Interactions will be translation invariant and are thus
given by a translation covariant collection of functions
ΦX(ω), X ⊂ Zd, on Ω0

X . That is, ΦτiX(ω) = ΦX(τ−iω),
where τi denotes a translation over an arbitrary lattice
vector i. The set of Φ will satisfy some summability con-
dition of the form∑

0∈X
||ΦX ||g(X) �∞ (1)

for some translation-invariant real function g(X) de�ned
on the �nite subsets of Zd, where ||.|| denotes a supre-
mum norm.
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If the g(X) in the summability condition grows fast
enough with either the diameter or the number of sites
in X, this implies a decay property of the interaction Φ.
The Gibbs measures for interactions are probability

measures on Ω . Their conditional probabilities of �nd-
ing con�gurations σΛ in a �nite Λ, given boundary con-
dition (external con�guration) ωΛc

are of Gibbsian form
for the local energy (Hamilton) function Hω

Λ(σ
Λ). Here

Hω
Λ(σ

Λ) =
∑
X∩Λ6=∅ ΦX(σΛωΛc

). Thus

µαΛ(σ
Λ|ωΛc

) =
exp(−βHω

Λ(σ
Λ))

ZωΛ
, (2)

for each choice of Λ, σ, and ω, and each Gibbs mea-
sure µα. Here the inverse temperature is given by β.
As long as g in the summability condition is larger

than a constant, one can de�ne ground state measures
and Gibbs measures for Φ, see e.g. [8, 9]. It is always
possible to �nd translation-invariant examples of those
measures, for translation-invariant interactions.
A traditional de�nition of �order� rests on the existence

of more than one Gibbs measure for a given interaction.
In such cases there exist correlation functions which do
not decay. In the case of the Ising ferromagnet, for ex-
ample (equivalent to an attractive lattice gas), there ex-
ist two extremal translation-invariant Gibbs measures,
the �plus� and the �minus� one, at su�ciently low tem-
peratures. If one considers µ to be the Gibbs measure
which is a symmetric convex combination (the average)
of these two, the pair correlations do not asymptotically
factorise, that is they do not converge to zero. In the case
of aperiodic order, often there exist many Gibbs mea-
sures, but only one translation-invariant one, which is
a mixture (convex combination) of the non-translation-
-invariant ones, with asymptotically non-factorising cor-
relations. This then will be the Gibbs measure to con-
sider.
The quantities to consider for di�raction questions are

the pair correlation functions

f(n) = µ(σ0σn) (3)

and their Fourier transforms, which in general are mea-
sures on Rd (or on d-dimensional tori).
For the Parisi distribution, one needs to consider the

overlap between two con�gurations σ1 and σ2, which is
given by

q(σ1, σ2) = lim
Λ→∞

1

|Λ|
∑
i∈Λ

σ1
iσ2

i. (4)

Its distribution then is computed with respect to the
product measure of the system under consideration, that
is the product of a ground state or the Gibbs measure
with itself.

2. Some partial answers

As for question 1, in [6] we investigated the distinc-
tion between what is now called �di�raction versus dy-
namical spectrum�, with an interpretation in terms of
atomic versus molecular long-range order. It became

well-known afterwards, based on work by Baake, Lee,
Lenz, Moody, Schlottmann and Solomyak [10�14], that
having pure point di�raction and pure point dynamical
spectrum, under some mild assumptions, are equivalent
properties of dynamical systems of translation bounded
measures. But this type of equivalence does not extend to
systems with continuous spectrum, as the example of the
Thue�Morse sequences �rst showed [6]. The di�raction
spectrum of the Thue�Morse system is singular continu-
ous, while the dynamical spectrum has a non-trivial pure
point part in the form of the dyadic rationals. This spec-
tral information is not re�ected in the di�raction spec-
trum. However, this `missing' part can be extracted from
the di�raction of a factor, the so-called period doubling
sequences, which are the Toeplitz sequences. In [15] an
even simpler example of this phenomenon was presented
for a one-dimensional system of random dimers, which
can be of +− or −+ type, and which can be located on
[2n, 2n+ 1] or on [2n, 2n− 1] intervals. This system has
absolutely continuous di�raction spectrum, but the long-
-range order associated to the location of the dimers �
�odd� or �even� � provides an additional point in the dy-
namical spectrum. It appears thus that molecules can be
more, but not less, ordered than their constituent atoms.
For a more general analysis, indicating how the dynami-
cal spectrum can be obtained as the union of the spectra
of various (ergodic) factors of a system, see [16].

It is unknown whether the statement that molecules
can be more but not less ordered than atoms extends to
the case of singular spectrum; in particular, if the di�rac-
tion spectrum has no absolutely continuous component,
does the same hold true for the dynamical spectrum?
It should be noted, that, despite the o�cial characteri-
sation of �crystals� in terms of their discrete spectrum,
inspired by the famous quasicrystal discovery of Schecht-
man [17], both before and after his discovery, alternative
and more general notions of long-range order in �weak� or
�turbulent� crystals have been proposed [6, 18�20]. We
also note that next to the discrete spectrum indicating
long-range order, some absolutely continuous spectrum,
due to the existence of thermal �uctuations is expected.
For some examples where either thermal or independent
�uctuations contribute a continuous spectrum compo-
nent, see [21�26].

As for question 2, one can construct aperiodic tilings
which are ground states for nearest-neighbor (tiling)
models, by associating a positive energy to nearest-
-neighbor pair of tiles which violates the matching rules,
and zero energy when the matching rules are satis�ed. In
one dimension one can choose aperiodic sequences, which
can be shown to be ground states for long-range (lat-
tice) interactions. Some stability and intrinsic frustration
properties for tiling models have been proven, but as for
positive temperatures (the Gibbs states) one is till now
restricted to one-dimensional aperiodic long-range order,
which occurs for in�nite-range interactions. This can oc-
cur either for one-dimensional long-range models, or for
exponentially decaying interactions which are stabilised
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in two other directions, see e.g. [27�37]. For many-body
interactions the existence of �rigid� or �frozen� aperiodic
long-range order was recently proven in [38].
To prove the existence of a properly quasicrystalline

state for a �nite-range model remains an open question,
however. There exists a conjecture, that for �nite-range
models in one and two dimensions at �nite temperature
there can occur only �nitely many extremal Gibbs mea-
sures, see e.g. [39]. This would imply that quasicrys-
talline order cannot appear below three dimensions. The
conjecture, however, is not believed by everyone [40].
As for question 3, tilings and sequences are known

to exist with only absolutely continuous (di�raction or
dynamical) spectrum, even uncorrelated sequences and
tilings, which have zero entropy, as for example occurs in
the Rudin�Shapiro system. Having zero entropy is a very
weak form of �order�, which can go together with having
no order at all in the spectral sense, see e.g. [41, 42] for
a discussion of this point.
As regards overlap distributions, in [43] it was observed

that continuous (absolutely or singular continuous, or a
combination of the two) di�raction spectrum implies a
trivial overlap distribution, whereas the Fibonacci se-
quences provide an example with a continuous overlap
distribution and the period-doubling Toeplitz sequences
have a discrete, ultrametric overlap distribution. More
recently, in [44] this was extended to show that continu-
ous overlap distributions occur for general Sturmian se-
quences (= �balanced words� = �most homogeneous con-
�gurations�), and moreover, for paperfolding sequences a
discrete ultrametric overlap distribution with dense sup-
port was found. For a related observation on the Fi-
bonacci and Sturmian systems, see also [42].
Although in the theory of spin glasses a huge progress

has occurred for mean-�eld models of the Sherrington�
Kirkpatrick type (due especially to Guerra and Tala-
grand [4, 45, 46]), not much is known about short-range
models. Thus aperiodic examples may play a useful role
in illustrating various possibilities. For example, the fact
that the overlap distribution is disorder-independent be-
comes much more plausible once one realises that one
does not need disorder at all to obtain nontrivial overlap
distributions.
It would be interesting to obtain examples also in

higher dimensions, via tiling constructions.
It should be mentioned here that tiling models for the

glass transition have been investigated in e.g. [42, 47�51].
This seems to be a promising new direction to explore the
role of aperiodic order in a new context.
Summarising, spatial aperiodicity has a large role to

play in condensed matter and mathematical physics, even
beyond the description of quasicrystals.
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