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We present numerical calculations of electronic structure and transport in the Penrose approximants. The
electronic structure of perfect approximants shows a spiky density of states and a tendency to localization that
is more pronounced in the middle of the band. Near the band edges the behavior is more similar to that of
free electrons. These calculations of band structure and in particular the band scaling suggest an anomalous
quantum di�usion when compared to normal ballistic crystals. This is con�rmed by a numerical calculation of
quantum di�usion which shows a crossover from normal ballistic propagation at long times to anomalous, possibly
insulator-like, behavior at short times. The time scale t∗(E) for this crossover is computed for several approximants
and is detailed. The consequences for electronic conductivity are discussed in the context of the relaxation time
approximation. The metallic-like or non-metallic-like behavior of the conductivity is dictated by the comparison
between the scattering time due to defects and the time scale t∗(E).
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1. Introduction

Since the discovery of Shechtman et al. [1] numerous
experimental studies indicated that the conduction prop-
erties of several stable quasicrystals (AlCuFe, AlPdMn,
AlPdRe. . . ) are quite opposite to those of good met-
als [2�6]. It appears also that the medium range order,
over one or a few nanometers, is the relevant length scale
that determines conductivity. In particular, the role of
transition elements enhancing localization has been of-
ten studied [7�12]. There is now strong evidence that
these nonstandard properties result from a new type of
breakdown of the semiclassical Bloch�Boltzmann theory
of conduction [13�16]. On the other hand, the speci�c
role of long range quasiperiodic order on transport prop-
erties is still an open question in spite of a large number
of studies (see Refs. [17�34] and Refs. therein).
In this paper, we study �how electrons propagate�

in approximants of the rhombic Penrose tiling P3 (PT
in what follows). This tiling is one of the well-known
quasiperiodic tilings that have been used to understand
the in�uence of quasiperiodicity on electronic transport
[19, 20, 22, 23, 30, 32, 33]. The main objective is to
show that nonstandard conduction properties result from
purely quantum e�ects due to quasiperiodicity that can-
not be interpreted through the semiclassical theory of
transport.

2. Approximants of Penrose tiling

To study electronic properties of PT, we consider a
series of periodic approximants, called Taylor approxi-
mants, proposed by Duneau and Audier [35]. These ap-
proximants have defects as compared to the in�nite per-

fect tiling, but the relative number of defects becomes
negligible as their size increases. They have been used to
study the magnetic properties of PT [36, 37]. Here we
study electronic structure and quantum di�usion in three
Taylor approximants, T = 3, 4, and 5. Their rectangular
cells Lx × Ly are 24.80a × 21.09a, 40.12a × 34.13a, and
64.92a × 55.23a, respectively. a is the tile edge length.
They contain 644, 1686, and 4414 sites, respectively.

3. Electronic structure

We study a pure hopping Hamiltonian

Ĥ = γ
∑
〈i,j〉

|i〉〈j|, (1)

where i indexes s orbitals |i〉 located on all vertexes. For
realistic order of magnitude of the model one can choose
the strength of the hopping between orbitals γ = 1 eV.
Indices i, j label the nearest neighbors at tile edge dis-
tance a. The properties of this model depend only on the
topology of the tiling. The electronic eigenstates |nk〉,
with wave vector k and energy En(k), are computed by
diagonalization in the reciprocal space for a number Nk
of vectors k in the �rst Brillouin zone. The density of
states (DOS), n(E), is calculated by

n(E) =
〈
δ(E − Ĥ)

〉
En=E

, (2)

where 〈. . .〉En=E
is the average on states with energy E.

It is obtained by taking the eigenstates for each k vec-
tor with energy En(k) such that E − δE/2 < En(k) <
E+ δE/2. δE is the energy resolution of the calculation.
When Nk is too small, the calculated quantities are sen-
sitive to Nk. Therefore Nk is increased until the results
do not depend signi�cantly on Nk. We use δE = 0.01 eV,
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Nk = 1442, 962, and 482 for Taylor approximants T = 3,
4, and 5, respectively.

3.1. Density of states

The density of states is shown in Fig. 1a. As expected
in [17, 28, 29], it is symmetric with respect to E = 0.
The main characteristic of these DOS are similar to that
obtained by Zijlstra [28, 29], for other family of the Pen-
rose approximants. At E = 0 a strictly localized state is
obtained [17, 38]. A gap is found for energy |E| . 0.13 eV
and a small gap with a width less than 0.01 eV seems to
be at |E| ≈ 2.7 eV [28, 29]. Other �ne gaps could be
present at |E| ≈ 0.3, 0.5, 1.7 eV (. . . ) but our energy
resolution cannot obtain them. The DOS is more spiky
at the center of the band (|E| < 2) and smooth near the
band edges (|E| > 2).

3.2. Participation ratio

In order to quantify this localization phenomenon, we
compute the average participation ratio de�ned by:

p(E) =

〈(
N

N∑
i=1

|〈i|nk〉|4
)−1〉

En=E

, (3)

where i indexes orbitals in a unit cell and N is the num-
ber of orbitals in this unit cell. For completely delocal-
ized eigenstates p is equal to 1. On the other hand, states
localized on one site have a small p value: p = 1/N . Fig-
ure 1b shows clearly a stronger localization of electronic
states for larger approximants.

3.3. Band scaling

The average Boltzmann velocity along the x direction
is computed by

VB(E) =

√〈
|〈nk|V̂x|nk〉|2

〉
En=E

, (4)

where the velocity operator along the x direction is
V̂x = [X̂, Ĥ]/(i~), with X̂ the position operator. VB
is the average intra-band velocity,

VB(E) =
1

~

〈
∂En(k)

∂kx

〉
En=E

. (5)

Figure 1c shows a smaller velocity at the center of the
band (|E| < 2). When the size of the approximant in-
creases, VB decreases as expected from band scaling anal-
ysis [16, 19�21]. Typically the width ∆E of a band En(k)
varies in the kx direction like, ∆E ∝ L−Γx , where Lx is
the length of the unit cell in the x direction. The ex-
ponent Γ depends on E and the di�usion properties of
the structure. For normal metallic crystals Γ = 1, for
disordered metallic alloys the electronic states are di�u-
sive and Γ = 2. From Eq. (5), the Boltzmann velocity
should satisfy that VB ∝ L1−Γ

x . Figure 1d shows VBL
Γ−1
x

versus energy E. For Γ ≈ 2 the value of VB(E)LΓ−1
x are

rather similar for the three approximants at the center
of the band (|E| < 2). For 2 < |E| < 3.5, it seems that
Γ ≈ 1.5, and near the band edges, |E| > 3.5, states are
almost ballistic Γ ≈ 1.

Fig. 1. Electronic structure in Penrose approximants.
(a) Total density of states (DOS) n(E). DOS is sym-
metric with respect to E = 0. (b) Average participation
ratio p(E). (c) Average Boltzmann velocity VB(E) along
the x direction, (d) VB(E) × LΓ−1

x versus energy E for
Γ = 2 (inset: Γ = 1.5).

4. Electronic transport

4.1. Quantum di�usion

The band scaling has a direct consequence for the
wave propagation in the medium. The mean spreading,
Lwp(t) of a wave packet is neither ballistic (i.e. pro-
portional to time t) as in perfect crystals nor di�usive
(i.e. Lwp(t) ∝

√
t) as in disordered metals. In general at

large t:

Lwp(E, t) ∝ tβ(E). (6)

The value of the exponent β in quasicrystals (or in ap-
proximants with size cell Lx going to in�nity) can be re-
lated to Γ in �nite approximants by β = 1/Γ [16]. Thus
our results on approximants show that states in PT are
di�usive (β ≈ 0.5) at the center of the band (|E| < 2),
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super-di�usive (0.5 < β < 1) for 2 < |E| < 3.5, and
almost ballistic (β ≈ 1) near the band edges (|E| > 3.5).
It is possible to go beyond these qualitative arguments

by de�ning in an exact manner the quantum di�usion as
we show now. The average square spreading of states of
energy E at time t along the x direction, is de�ned as:

X2(E, t) =
〈(
X̂(t)− X̂(0)

)2〉
E
, (7)

with X̂(t) � the Heisenberg representation of the oper-

ator. It can be shown that X̂ is the sum of two terms
[13, 15]:

X2(E, t) = V 2
B(E)t2 +X2

nB(E, t). (8)

The �rst term, XB = V 2
B(E)t2, is the ballistic (intra-

-band) contribution at energy E. The semiclassical
model of the Bloch�Boltzmann transport theory amounts
to taking into account only this �rst term. The sec-
ond term (inter-band contributions) X2

nB(E, t) is a non-
-Boltzmann contribution. It is due to the non-diagonal
elements of the velocity operator and describes a spread-
ing of the wave function.

Fig. 2. (a) Average square spreading versus time t at
E = 1.0 eV in perfect Penrose approximants T = 3
and 5: (dashed line) Boltzmann X2

B and (line) non-
-Boltzmann X2

nB (inset: X2
nB versus time t at di�erent

energies in approximant T = 5). (b) Time t∗ in perfect
Penrose approximants (see text).

One de�nes the time t∗(E) for which X2
B = X2

nB at
energy E (Fig. 2a). For long times, t > t∗, the ballistic
semiclassical contribution dominates the quantum di�u-
sion but for short times, t < t∗, the non-ballistic con-
tribution dominates (�low velocity regime� [13]). There-
fore t∗(E) is important time scales for any approximant.
On time scales larger than t∗(E) the approximant be-
haves like a normal metal whereas on smaller time scales
the approximant may behave quite di�erently and, in
particular, may show insulator-like behavior (see below).
When the size of the approximants increases, the charac-

teristic time limit t∗ of the crossover between ballistic and
non-ballistic behavior increases (Fig. 2b). Similar results
has been found in approximants of octagonal tiling [34].
From ab initio electronic structure calculation and in re-
alistic approximants α-AlMnSi [13], 1/1 AlCuFe [14] and
in the complex metallic hexagonal phase λ-AlMn [15] it
has been shown that the order of magnitude of t∗(E) is
about 10−14 or 10−13 s.
X2

nB(E, t) oscillates and is bounded by LnB(E)2, which
depends on the energy E [15]. From numerical calcula-
tions (Fig. 2a), it is found that for many energies E,
X2

nB(E, t) reaches rapidly its maximum limit LnB(E)2

and one can assume, XnB(E, t)2 ≈ LnB(E)2 for large t,
and t∗ ≈ LnB/VB.

4.2. Conductivity in the relaxation time approximation

In the relaxation time approximation (RTA)
[13, 16, 25] the role of phonons and static defects
are taken into account through a scattering time τ .
τ decreases when temperature T increases and when
the number of static defects increases. The scattering
time estimates in quasicrystals and approximants from
transport measurements at low temperature (4 K) [2, 3]
is about a few 10−14 s or even more. That is close
to the time limit t∗ between the Boltzmann and non-
-Boltzmann behavior (see previous section). Therefore
the non-Boltzmann behavior could play a crucial role in
the conductivity.
At zero temperature, the static conductivity is given

by the Einstein formula,

σ = e2n(EF)D(EF) , (9)

where EF is the Fermi energy andD, the di�usivity which
is the sum of a Boltzmann and non-Boltzmann terms [13]:

D(EF) = DB +DnB(EF), with DB = V 2
B(EF)τ. (10)

DnB(EF) is calculated numerically from eigenstates (see
[15, 16]).

Fig. 3. Di�usivity D, D = DB + DnB, in relaxation
time approximation, versus scattering time τ , at EF =
1.0 eV in the Penrose approximants T = 3 and 5.

Figure 3 shows the di�usivity in approximants T = 3
and 5 for EF = 1 eV. At very low τ , τ . 10−15 s, di�u-
sivity is always ballistic, for larger τ values up to τ ≈ t∗
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the non-Boltzmann terms dominate, and for τ � t∗ peri-
odicity of approximants induces ballistic di�usivity. The
intermediate zone, with a non-metallic (non-ballistic) be-
havior due to structure, is more important in the largest
approximant, and it corresponds to realistic values of
scattering time.

5. Conclusion

To summarize, we have presented a numerical study
of electronic structure and quantum di�usion for a pure
hopping Hamiltonian in approximants of the Penrose
tiling containing 644, 1686, and 4414 sites in a unit cell.
When the size of the unit cell of the approximant in-
creases the usual Boltzmann term for quantum di�usion
(ballistic term) decreases rapidly and non-Boltzmann
terms become essential to understand transport proper-
ties. These non-Boltzmann terms can have �insulator-
-like� behavior, suggesting that in larger approximants,
�insulator-like� states, due to long range quasiperiodic or-
der, could exist. Calculations in larger approximants are
in progress.
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