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We derive a structure model for icosahedral quasicrystals. The model is based on a statistical approach

involving the concept of average unit cell. This approach enables limiting calculations to real space as opposed to
higher-dimensional analysis involving to unphysical atomic surface modeling. We start with the three-dimensional
Ammann tiling with its two rhombohedral prototiles. For monoatomic decoration of the lattice nodes the perfect
agreement with the higher-dimensional description was recently shown. In this paper we discuss the shape of the
average unit cell and the �rst attempts for decoration scheme.
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1. Introduction

Icosahedral quasicrystals (i-QCs) are three-
-dimensional aperiodic structures with �vefold symmetry
in their di�raction pattern. They are the most frequent
quasiperiodic structures occurring in ternary and bi-
nary systems [1]. However, there are only few re�ned
i-QCs structures [2�4]. Current models for structure
solutions of i-QCs are based on cluster analysis (either
three-dimensional physical or in higher-dimensional
space).

The method used in this work is based on a statisti-
cal approach applying the concept of average unit cell
(AUC) [5]. The AUC is a statistical distribution of pro-
jections of considered quasicrystalline lattice nodes onto
a periodic reference grid. The distribution is uniform and
dense and follows a scaling rule. Since quasicrystals are
two-scale structures, two reference grids with the ratio
of lattice constants given by τ need to be introduced.
Thus two coordinates u and v are obtained by a projec-
tion and the distribution P (u, v) fully de�nes the AUC.
It is known [5�8] that for a quasicrystal the AUC is non-
-zero only along a line segment with a τ2 coe�cient in
(u, v)-plot. This characteristic is called TAU2-scaling [6].

The main advantage of the statistical method is that it
su�ces to consider 3D physical space. It was also shown
that the shape of the AUC is directly related to the shape
of the atomic surface in the higher-dimensional descrip-
tion [9]. The statistical approach has already been suc-
cessfully applied to decagonal Al�Ni�Co and Al�Cu�TM
(TM = Co, Ir, Rh) phases [10, 11]. The starting struc-
tural model for i-QCs within the statistical approach
is the 3D Ammann tiling (AT), also called Ammann�
Kramer�Neri tiling, which is just the generalization of
the rhombic Penrose tiling to 3D [12]. The structural
units of AT are the golden prolate and oblate rhombohe-
dra; their volumes are in the ratio τ ≈ 1.618, the golden
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mean. The �rst application of the statistical approach to
i-QCs was shown in [13, 14].

2. Average unit cell of the 3D Ammann tiling

The shape of the AUC for AT is the Keplerian tri-
acontahedron. Its faces are golden rhombuses (Fig. 1,
left). This solid exhibits icosahedral symmetry; in par-
ticular, it has six �vefold axes. The analytical result
shows that the AUC is linearly related to the atomic sur-
face by ui = −r⊥i /τ (r⊥i = x⊥, y⊥, z⊥; i = x, y, z), where
r⊥i is the perpendicular space coordinate while ui is the
corresponding parallel (physical) space coordinate within
the AUC. This is only true for a proper choice of the re-
ciprocal space basis used for construction of the AUC,
provided that the shape of the AUC is the Keplerian tri-
acontahedron (see in the sequel). The relation between
the AUC and the atomic surface is shown in Fig. 1 (right).

Fig. 1. (left) Keplerian triacontahedron. (right)
Atomic surface (black, bigger) and AUC shape (gray,
smaller). The coordinates of the AUC nodes are τ times
smaller than those of the atomic surface.

The AUC is numerically obtained as a projection of
the real structure positions (for a model structure like
AT the positions of nodes in AT) on the reference lattice.
The statistical distribution of these projections P (ui) is
called AUC. The reference lattice is a square grid with
lattice constants related to the reciprocal space vectors
k used for indexing the di�raction peaks. In order to
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completely describe a quasicrystal one must introduce
modulation vectors (q = k/τ) as well as a second refer-
ence grid with a τ times larger lattice parameter. Pro-
jections onto both grids simultaneously give a 6D distri-
bution P (ui, vi), where vi are the AUC coordinates with
respect to the reference lattice related to the modulation
vector q. The complete distribution P (ui, vi) is again
non-zero only along lines vi = −τ2ui, which simpli�es
the description.
Here we show some shapes of the P (ui) distribution

for two sets of wave vectors used to construct a refer-
ence lattice. We prove that they depend on the choice
of these vectors. For the shapes in Fig. 2 the reciprocal

space vector basis d
∗‖
i was chosen (see Fig. 3, left, for the

de�nition of the basis vectors).

Fig. 2. Dependence of the AUC shape on the
choice of basis vectors. The following basis vec-
tors were chosen (Miller indices in brackets, set-

ting d
∗‖
i as a reciprocal space basis was chosen):

(left �gure) |kx| = 13.7 (0,−5,−5, 2, 6, 2),|ky| =
7.2 (0, 2,−2,−3, 0, 3),|kz| = 17.9 (9, 4, 4, 4, 4, 4), (right
�gure) |kx| = 22.2 (0,−8,−8, 3, 10, 3), |ky| =
11.7 (0,−3, 3, 5, 0,−5), |kz| = 4.2 (2, 1, 1, 1, 1, 1).

Fig. 3. (left) The two reciprocal space bases. (right)
AUC shape with respect to Cartesian basis vectors.

After changing the reciprocal space basis to Cartesian

(basis vectors b
∗‖
i in Fig. 3, left) the shape of the AUC

becomes uniformly triacontahedral (Fig. 3, right). In this
case the peak position can be described as follows:

k = hq0x + h′k0x + kq0y + k′k0y + lq0z + l′k0z,

where

q0x = c[1, 0, 0], q0y = c[0, 1, 0], q0z = c[0, 0, 1],

k0x = c[τ, 0, 0], k0y = c[0, τ, 0], k0z = c[0, 0, τ ]

are the vectors taken along the Cartesian basis vectors

b
∗‖
i (Fig. 3, left) and h, h′, k, k′, l, l′ are integer indices.
The numerical values: c = 1√

τ+2
≈ 0.5257, τc = τ√

τ+2
≈

0.8507.

3. Structure factor

The structure factor for AT can be obtained as the
Fourier transform of the distribution P (ui) integrated
over AUC. Analytically, it is just the volume integral
over the Keplerian triacontahedron. Numerically it is the
integral over the distribution of points (i.e. the shapes
in Fig. 2 and 3, right). The TAU2-scaling reduces the
Fourier transform to a 3D integral, since the full distri-
bution P (ui, vi) is non-zero only for TAU2-scaling prop-
erty.
The structure factor for AT is given by the following

formula:

F (k) = fat

∫ ∫ ∫
AUC

P (ux, uy, uz) exp (iχ · u) d3u

where

χ = [χx, χy, χz]

= [kx (h
′ − τh) , ky (k

′ − τk) , kz (l
′ − τ l)] ,

u = [ux, uy, uz] =
[
−x⊥/τ,−y⊥/τ,−z⊥/τ

]
and fat is the atomic form factor, considered equal to 1
for non-decorated AT.

4. Di�raction pattern

The peak intensities for the undecorated Ammann
model structure are calculated as the square of the struc-
ture factor modulus. For �empty� AT the structure factor
was already derived [11, 12] and the agreement of AUC
and higher-dimensional description was proven (Fig. 4).

Fig. 4. Di�raction pattern for undecorated AT calcu-
lated along Ky-component of the wave vector: dashes
� numerical calculations for model structure (Fourier
transform of AT points in real space), squares � an-
alytical volume integration over Keplerian triacontahe-
dron, crosses � numerical integration over distribution
within AUC.

5. Structural units and decorations

The model based on AT uses only two structural units
in real space � prolate and oblate rhombohedra (Fig. 5,
left). Our goal is to �nd the distribution of units with a
certain orientation in the AUC and to decorate them with
atoms of di�erent kinds. The regions cut out of the AUC
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correspond to a given orientation and decoration of the
rhombohedra in real space. The distribution of prolate
rhombohedra in one basic orientation is shown in Fig. 5
middle and right. This is a picture in perp-space (on the
atomic surface). Due to linear relation between atomic
surface and AUC, the distribution within AUC is similar.
The shape of such distribution is also rhombohedral.

Fig. 5. The distribution in perp-space of oblate (mid-
dle) and prolate (right) rhombohedron in basic orienta-
tion given by real-space basis vectors (left). The vectors

d
‖
i are related to the reciprocal space vectors d

∗‖
i by an

orthogonality condition. The gray area is the part of
the distribution corresponding to the marked vertex of
a rhombohedron.

The AUC (as well as the atomic surface) can be divided
into separate regions related to only two orientations of
rhombohedra pairs (prolate and oblate): one pair in the z
direction (along some �vefold axis) and one in any other
of the �vefold axes. The vertices of rhombohedra of a
certain orientation build the distribution. It means that
they cut out some part of the AUC. There are altogether
4 × 8 × 5 × 6 = 960 allowed orientations of such distri-
butions. After applying all icosahedral symmetry oper-
ations some overlaps of the distributions are observed.
The decoration scheme is to be performed in physical
space where the rhombohedra are spanned on neighbor-
ing nodes of the Ammann lattice. Yet such rhombohedra
are too small to contain any decoration and to ful�ll the
proper conditions of the re�nement procedure.
The decoration scheme can be obtained for instance

from the in�ation rule. The �rst three in�ation steps for
the prolate rhombohedron oriented in the z direction of
the physical space are shown in Fig. 6.

Fig. 6. Prolate rhombohedron in real-space in�ated: τ
times (left), τ2 times (middle) and τ3 times (right). The
nodes of AT contained within the in�ated rhombohe-
dron are marked.

For the structure re�nement it is important to keep the
proper ratio between the number of �tting parameters
to the number of di�raction peaks. Therefore in�ation
carried too far maybe of no avail. Inside the τ3-times
in�ated rhombohedron there are 27 possible atomic po-
sitions which is not su�cient yet for a successful re�ne-
ment.

6. Summary and outlook

We chose the 3D Ammann tiling with two rhombohe-
dra as structural units as a model of an icosahedral qua-
sicrystal. We derived the structure factor for an empty
Ammann lattice using the average unit cell concept that
is by the statistical approach. We proved perfect agree-
ment of the AUC results with the commonly used higher-
-dimensional analysis. We also dealt with atomic deco-
ration and found the possible orientations of rhombo-
hedra and their distributions in the AUC. The in�ated
rhombohedra indicated the starting atomic positions for
the re�nement procedure. Currently we study decoration
schemes with atoms of di�erent kind for binary and/or
ternary systems.
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