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Quasicrystals are structures that are not periodic but possess a long range positional order. They can have
any rotational symmetry including those that are forbidden in periodic crystals. The symmetry is classi�ed by
the point group and the rank D. In quasicrystals, phasons as additional hydrodynamic modes cause correlated
rearrangements of the particles. The number of phasonic degrees of freedom depends on the rank. For colloidal
quasicrystals that are induced by laser �elds, speci�c phasonic displacements can be realized by changing the phases
of the laser beams in a well-determined way. The arising trajectories of colloids in two-dimensional light-induced
colloidal quasicrystals with rank D = 4 have already been analyzed in detail. Here, we analyze the colloidal
trajectories in two-dimensional quasicrystals with 14-fold symmetry having rank D = 6. We observe complex
paths of the colloids consisting of straight and winding lines as well as jumps.

DOI: 10.12693/APhysPolA.126.568

PACS: 82.70.Dd, 61.44.Br

1. Introduction

Phasons are additional hydrodynamic modes of qua-
sicrystals similar to conventional phononic excitations.
In contrast to a periodic crystal, a quasicrystal of dimen-
sion d can possess several n relatively incommensurate
length scales per direction leading to D = nd hydrody-
namic variables whose excitations do not cost free energy
in the long wavelength limit. Let us note that there are
also quasicrystals with di�erent numbers of incommen-
surate length scales in di�erent directions (see e.g. dis-
cussion in [1]). D is termed the rank of the quasicrystal.
These modes are divided into d phononic ones which in
the long wavelength limit correspond to translations of
the atoms and D− d phasonic ones which resemble com-
plex correlated rearrangements of atoms. In particular,
many other properties of phasons are still a main topic
in research [2].
In statistical physics, colloidal particles are a well-

known model system to study phenomena like ordering,
crystallization, and dynamics in external potentials [3].
In a laser �eld colloids are forced towards the areas of
highest light intensity [4, 5]. This allows the formation
of complex structures [6]. For example, quasicrystalline
ordering can be established by employing an interference
pattern with quasicrystalline symmetry [7�18], these col-
loidal systems connect to the growing subject of soft mat-
ter quasicrystals (see, e.g., [19]). By tuning the laser
phases appropriately it is possible to change the phasonic
displacement of the system in a controlled way [9, 11, 16].
Thus, we can study the trajectories of the colloids that
follow the maxima in the light �eld.
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In recent works [16, 20], a method was presented to
predict the trajectories of colloidal particles in a qua-
sicrystalline laser �eld when a phasonic drift is applied,
i.e., when the phasonic displacement changes at a con-
stant rate in time. It was shown that every colloid can
be mapped into characteristic areas of reduced phononic
and phasonic displacement. Therefore, one only has to
study the paths inside these areas to derive the behavior
for the whole quasicrystal.
So far quasicrystalline interference patterns with 8-,

10- and 12-fold rotational symmetry were considered,
which are all of rank D = 4. Here, we show on the basis
of the 14-fold symmetry how the method can be further
extended to laser �elds with rank D = 6. Compared to
the D = 4 case, the additional phasonic modes lead to a
more complex behavior and we identify several new types
of colloidal trajectories.
In Sect. 2 we introduce the model system. The charac-

teristic areas of reduced phononic and phasonic displace-
ment are determined in Sect. 3. In Sect. 4 we study the
behavior inside these areas to predict the colloidal tra-
jectories in general. Selected examples are analyzed in
detail. Finally, we conclude in Sect. 5.

2. Laser �elds with quasicrystalline symmetry

and phasonic displacements

A light �eld acts on colloids like an external poten-
tial. The interference pattern created by 7 laser beams
arranged as illustrated in Fig. 1a corrensponds to an ex-
ternal potential [7, 18, 21] of the form

V (r) = −V0

49

6∑
j=0

6∑
k=0

cos
(
(Gj−Gk)·r+φj−φk

)
, (1)

where Gj = (2π/aV cos(2πj/7), 2π/aV sin(2πj/7)) with
j = 0, ..., 6 are the wave vectors projected on the sam-
ple plane depicted in Fig. 1b; aV = 2π/|Gj | denotes the
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length scale of the potential and φj the phases of the
laser beams. The interference pattern exhibits 14-fold
symmetry and is illustrated in Fig. 1c.

Fig. 1. (a) Setup of seven interfering laser beams.
(b) Projection of the wave vectors on the sample plane.
(c) Resulting interference pattern. High laser intensities
corresponding to minima in the potential are depicted
dark blue. Lower intensities appear in brighter red.
(d) Colloids in the minima of a potential with 14-fold
symmetry.

Our parameterization of the phases is similar to [22]
and [23]:

φj = Gj · u + G3jmod 7 · v + G5jmod 7 ·w, (2)

where u = (ux, uy) denotes the phononic, v = (vx, vy)
and w = (wx, wy) the phasonic displacements. Let us
note that compared to aD = 4 quasicrystal an additional
phasonic displacement vector is required.
In the following, we consider the limit of large potential

strengths or low temperatures (V0 � kBT ), such that all
colloids are located in the minima of the potential (cf.
snapshot shown in Fig. 1d).

3. Characteristic displacements

and characteristic areas

In a periodic crystal, we can deduce many properties
from a single unit cell [24, 25]. In a quasicrystal, we can
map all particle positions onto particles inside character-
istic areas of small phononic and phasonic displacements
[16, 20]. To determine the characteristic areas, we �rst
calculate phononic and phasonic displacements ∆u, ∆v
and ∆w that change the di�erences between the phases
φj − φk in Eq. (1) only by integer multiples of 2π. We
solve Vv+∆v, w+∆w(r+∆u) = Vv,w(r) where Vv,w(r)
denotes a potential with the phasonic displacements v
and w. For j = 0, . . . , 13, we obtain as suitable combi-
nations

∆u = (ur cos(jπ/7), ur sin(jπ/7)),

∆v = (vr cos(3jπ/7), vr sin(3jπ/7)), and

∆w = (wr cos(5jπ/7), wr sin(5jπ/7)). (3)

These displacements do not modify the potential when

ur/aV =
8

49
(n1 a+ n2 b+ n3 c) ,

vr/aV =
8

49
(n2 a+ n3 b+ n1 c) ,

wr/aV =
8

49
(n3 a+ n1 b+ n2 c) , (4)

where n1, n2 andn3 ∈ Z and a, b and c are the constant
values

a= (1−cos(10π/7))2−(1−cos(2π/7))(1−cos(6π/7)),

b = (1−cos(6π/7))2−(1−cos(2π/7))(1−cos(10π/7)),

c = (1−cos(2π/7))2−(1−cos(6π/7))(1−cos(10π/7)).

(5)

Thus, a colloid at position r in a potential with phasonic
displacements v and w can be mapped to a reduced posi-
tion r(red) = r−∆u in a potential with reduced phasonic
displacements v(red) = v + ∆v and w(red) = w + ∆w in-
side the particular characteristic area.
To determine the size of the characteristic areas we

consider the subspaces spanned by a chosen phononic
direction ej = (cos(πj/7), sin(πj/7)) and its phasonic
counterparts. Thus, we get a three-dimensional subspace
in every direction. We have to �nd cuboids of the side
lengths δu, δv, and δw that �ll out the whole volume
when shifted about ∆u in phononic and ∆v and ∆w in
phasonic directions. Then all reduced positions and re-
duced phasonic displacements are limited by

|r(red) · ej | ≤ δu/2aV, |v(red) · ej | ≤ δv/2aV,

and |w(red) · ej | ≤ δw/2aV (6)

for all symmetry directions j = 0, . . . , 13. A possible
choice is δu/2aV = δv/2aV = δw/2aV = 1/2(−a− b).

4. Analyzing colloidal trajectories

4.1. Method

In order to describe the colloidal trajectories in
a quasicrystal with 14-fold symmetry, we have to
consider a 4-dimensional phasonic space spanned by
vx, vy, wx, and wy. Since it is too complex to sample
the complete space, we restrict our analysis to drifts on
selected planes in the phasonic space.
As a �rst attempt either w is varied while v = 0 or v

is changed while w = 0. We trace the paths of colloids
started at the origin for all drift directions within the
respective phasonic plane. Then the important points
of the trajectories for reduced phasonic displacements
w(red) or v(red) and the corresponding reduced positions
r(red) can be presented in the diagrams of Fig. 2.
The diagrams correspond to those obtained for the

D = 4 quasicrystals in [16, 20]. The procedure to de-
rive a trajectory for the case v = 0 (see Fig. 2a,b) is as
follows: When the phasonic displacement w(red) reaches
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Fig. 2. (a,b) Areas of reduced positions r(red) and re-

duced phasonic displacements w(red) for v = 0. (c,d)

Areas of reduced positions r(red) and reduced phasonic
displacements v(red) for w = 0. The characteristic areas
are limited by blue polygons. The lines where particle
start to slide or end up after sliding or remapping are
marked by di�erent colors. Selected lines are also la-
belled by letters (A), (B), or (C) in order to denote
corresponding lines.

a point marked by (1,2) the colloid jumps from its old
position (1) to a new one (2) of the same color. Corre-
sponding colors of selected lines are also denoted by (A),
(B), and (C). Let us note that the positions (2′) are
only reached for a drift along a symmetry axis or slightly
beside it. Since the colloidal position is now outside the
characteristic area, one has to map it back inside by em-
ploying combinations of ∆u, ∆w and also ∆v. Due to
the latter, for the mapped quantity v(red) 6= 0. Thus, one
has to consider a new diagram for the reduced phasonic
displacements w (red) and the reduced positions r(red) af-
ter every jump. The same di�culty arises for drifts in the
w = 0 plane. Therefore, in contrast to quasicrystals with
rank D = 4, the derivation of a colloidal trajectory for
an arbitrary drift is for D = 6 in most cases quite com-
plex, as many diagrams would be required for a complete
prediction.

4.2. Selected trajectories

There are drifts for which it is possible to deduce the
trajectories with a single diagram for the reduced pha-
sonic displacements. For certain drifts in the plane with
vy = wy = 0, the colloid moves in x direction. In addi-
tion, the phasonic counterparts ∆w and ∆v to the re-
quired ∆u only a�ect the x components wx and vx. As a

consequence, the phasonic plane with v
(red)
y = w

(red)
y = 0

is never left during the mapping process. In the following,
we discuss for selected drifts the colloidal trajectories that
can be completely derived from the diagram in Fig. 3a.

Fig. 3. (a) Section of the characteristic diagram for the

reduced phasonic displacements v
(red)
x and w

(red)
x with

vy = wy = 0. (b)�(e) Selected typical colloidal trajecto-
ries arising for vx −wx drifts in certain directions. The
directions of motion are indicated by arrows. The scale
bar denotes the length scales in x- and y-direction.

For a phasonic drift in the direction (vx, vy, wx, wy) =
(cos(3π/7), 0, cos(5π/7), 0) we �nd a zigzag path illus-
trated in Fig. 3b. It is similar to the zigzag paths in
quasicrystals with rank D = 4 which is why we refer for
a detailed description to [16].

On the other hand, a new type of trajectory is de-
picted in Fig. 3c. It consists of straight paths in-
terrupted by jumps in the opposite direction and oc-
curs when a drift in the direction (vx, vy, wx, wy) =
(cos(9π/70), 0, cos(3π/14), 0) is applied. The particle
moves on a straight line until the phasonic displacement
reaches a point in the diagram in Fig. 3a such that the
particle jumps. The phasonic displacements and the po-
sitions can be mapped back into the characteristic areas
to predict the further path of the colloids when the dis-
placement is further increased.

Figure 3d illustrates an example of a straight path
without any jumps. It arises for a phasonic drift in the
direction (vx, vy, wx, wy) = (1, 0, 1, 0). In this case, the
phasonic displacement never reaches a point in the di-
agram Fig. 3a and as a consequence the particle never
leaves a minimum. Therefore, the phasonic displacement
is simply mapped back when it crosses the border of its
characteristic area. This drift proceeds along a symme-
try plane in the phasonic space such that the form of the
trajectory is a straight line.

Another new type of trajectory has the shape of
a winding line as shown in Fig. 3e. It arises,
e.g., when a drift in the direction (vx, vy, wx, wy) =
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(cos(3π/7), 0, cos(5π/7), 0) is applied for a colloid po-
sition whose initial reduced phasonic displacement is not
in the origin but at vx = 0.3aV and wx = −0.2aV. Just
as in the example before, the colloid never jumps. Com-
pared to the previous case the drift does not move along
a symmetry plane in the phasonic space which leads to
the occurrence of curves in the path.

Fig. 4. General colloidal trajectories representing the
majority of the observed colloidal paths: (a) A com-
bination of straight and winding lines separated by
jumps. (b) Several jumps along an irregular zigzag path.
(c) Chaotic trajectory consisting of irregular slides and
jumps in between.

Beside these presented typical paths, for most drifts we
�nd much more complex trajectories. Further examples
are shown in Fig. 4. Let us note that all paths of the
colloids are composed of the typical trajectories such that
every section can be explained separately.

5. Conclusions

On the basis of the 14-fold rotational symmetry, we
have extended previous studies [16, 20] to quasicrystals
with rank D = 6. We showed how one can still predict
colloidal trajectories that are caused by phasonic drifts in
spite of the increased complexity in the phasonic space.
In addition, we were able to identify new types of tra-
jectories in addition to the regular straight and zigzag
paths that are already known from quasicrystals with
rank D = 4.
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