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We present a methodology for constructing weavings from 2-colorings of the plane. In particular, we consider
tilings T of the plane by triangles and their corresponding triangle groups G. We derive 2-colorings of T using the
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1. Introduction

In Ref. [1] Ramsden et al. showed that crystalline nets
in the Euclidean space can be constructed from retic-
ulations of the hyperbolic plane H2. The construction
of crystalline three-dimensional Euclidean nets is done
by projecting two-dimensional hyperbolic tilings onto a
family of triply periodic minimal surfaces.
Among the goals of this study is to construct weavings

in H2 which can then be used to construct three-periodic
patterns. We de�ne a weaving as an interlacement, de-
termined by a weaving map, of two disjoint geometrically
identical nets. In the following, we discuss and illustrate
the methodology using tilings in the Euclidean plane E2

and, consequently, weavings in E2, but the methodology
also works for the hyperbolic plane H2 with no adjust-
ments.

2. Tilings and their colorings

Let ∆ be any triangle in E2 with interior angles π/p,
π/q, π/r, where p, q, r are integers ≥ 2. Repeat-
edly re�ecting ∆ on its sides results in a triangle tiling
T := T (p, q, r) of the appropriate plane by copies of ∆.
Let P,Q,R, respectively, denote the re�ections on the
sides of ∆ opposite the angles π/p, π/q, π/r. The
group G := G(p, q, r) of isometries generated by P,Q,R
is called a triangle group and has group presentation
〈P,Q,R | P 2 = Q2 = R2 = (QR)p = (RP )q = (PQ)r〉.
The group G acts on E2, and the orbit of a point x ∈ E2

is the set of the images of x under the elements of G,
denoted by Gx = {gx | g ∈ G}. The set of orbits of E2

under G form a partition of E2. A subset of E2 which
contains exactly one point from each of these orbits is
called a fundamental region for the action of G on E2 or,
in short, a fundamental region of G.
It is easy to see that the triangle ∆ contains exactly

one point from the orbits of G (except on its boundary
which may contain duplicates of representative of some
orbits). Then ∆ is a fundamental region of G.
The tiling T is theG-orbit of∆, andG acts transitively

on T and StabG∆ = {e}. Consequently, there exists a
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one-to-one correspondence between G and T given by
g 7→ g∆ where g ∈ G, and g′ ∈ G acts on g∆ ∈ T by
sending it to its image under g′.
Suppose H is a subgroup of G of index n. Let

{g1, g2, . . . , gn} be a complete set of left coset represen-
tatives of H in G with g1 ∈ H, and {c1, c2, . . . , cn} a set
of n colors. Then the assignment giH∆ 7→ ci de�nes an
n-coloring of T which is G-transitive.
To construct the coloring, assign color ci to giH∆

for i = 1, 2, . . . , n. The group G acts transitively on
{g1H∆, g2H∆, . . . , gnH∆} with g ∈ G sending giH∆
to ggiH∆. The elements of G which �x c1 constitute
the subgroup H, while the elements which �x color ci
constitute the conjugate subgroup giHg

−1
i of H. Thus,

the symmetry group of the coloring is the intersection of
all conjugate subgroups of H which is the CoreGH =
∩giHg−1i . This connection between subgroups and col-
oring is described in [2, 3].
A fundamental region of H denoted by ∆H consists

of n copies of ∆ representing each color. Henceforth,
we let H be an index two subgroup of G. Then a fun-
damental region ∆H may be given by ∆ ∪ g∆ for some
g /∈ H; speci�cally, ∆H consists of c1 = white and c2 =
black copies of ∆. Furthermore, we impose the following
condition for the choice of g /∈ H in ∆H = ∆ ∪ g∆. The
reason for imposing this condition will be explained later.
FR Condition. If H is generated by the set

{h1, h2, . . . , hl}, we choose g such that the �xed set of
each hj, {x ∈ E2 | hjx = x}, intersect both ∆ and g∆.
Let us note that for any index 2 subgroup H of G, it

is possible to choose a generating set of H such that the
FR Condition is satis�ed. However, this is not necessarily
true of higher index subgroups of G.
In Fig. 1 (left), we illustrate the tiling T := T (4, 4, 2)

which has fundamental region ∆ with interior angles π/4,
π/4, π/2. It is associated to the triangle group G :=
G(4, 4, 2). Then in Fig. 1 (right), we have the 2-coloring
of T corresponding to the subgroup H2 = 〈R,Q, PRP 〉
of G. The symmetry group of the coloring CoreGH2 is
H2 itself since H2 is normal in G. A fundamental region
of H2 is ∆H2

= ∆∪P∆, which consists of a white tile ∆
and a black tile P∆. Let us note that ∆H2

satis�es the
FR Condition as the �xed lines of the re�ections R, Q,
PRP intersect both ∆ and P∆.
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Fig. 1. The tiling T (4, 4, 2) (left), and its 2-coloring by
H2 = 〈R,Q, PRP 〉 (right).

3. From colorings to nets

Given a 2-coloring of the tiling T associated with a sub-
group H of G, we simultaneously construct two disjoint
nets which are geometrically identical � a black (B-)net
and a white (W -)net, which we collectively call overlap-
ping nets and denote by OH . The W -net is represented
by a net of dashed lines for obvious reasons.

3.1. Vertex sets of overlapping nets

We de�ne B- and W -vertex sets for OH via B- and
W -patches de�ned below using ideas from combinatorial
tiling theory [4].
Consider the tiles in T as chambers, and their colors as

the chamber classes. We have black and white chamber
classes, which are determined by the subgroup H of G
used to color T . Furthermore, for each tile g∆ in T , label
the edges opposite the angles π/q, π/r, π/p by 0, 1, 2,
respectively. Then record the neighbor-relations of the
chambers which are formally described by maps s0, s1,
and s2 from the chamber system onto itself [5]. These
maps are de�ned as follows: the map si sends a chamber
c to the chamber across the edge i of c.
In our case, the map si either �xes (F) the colors or

interchanges (I) them. Since the maps si cannot �x the
colors simultaneously, we only have 7 types of patches
de�ned in Table.
Each patch type corresponds to an index 2 subgroup

of G := G(p, q, r). In particular, if all of p, q, r are even,
then G has seven index 2 subgroups [3], and each of the
seven patch types occurs in a 2-coloring of T (p, q, r).

Fig. 2. Patches by: H1 = 〈QR,RP 〉 (left) and H2 =
〈R,Q, PRP 〉 (right).

In Fig. 2, we illustrate 2 types of B- andW -patches us-
ing two of the seven index 2 subgroups of G(4, 4, 2). The

black and grey dots correspond to B- and W -vertices,
respectively, which are de�ned below.
Vertex Sets Construction. We de�ne the B-vertex

set as the collection of the centroids of the B-patches.
The W -vertex set is similarly de�ned.

TABLE

The de�nition of the 7 types of B- and W -patches.

s0 s1 s2 De�nition of W- and B-patches

I I I B-patches are the black tiles;
W -patches are the white tiles

I F F B-patches are the union of black
tiles about the common vertex
of 1- and 2-edges; similarly for
W -patches

F I F B-patches are the union of black
tiles about the common vertex
of 0- and 2-edges; similarly for
W -patches

F F I B-patches are the union of black
tiles about the common vertex
of 0- and 1-edges; similarly for
W -patches

I I F B-patches are the union of ad-
jacent black tiles along 2-edges;
similarly for W -patches

I F I B-patches are the union of ad-
jacent black tiles along 1-edges;
similarly for W -patches

F I I B-patches are the union of ad-
jacent black tiles along 0-edges;
similarly for W -patches

3.2. Edges of overlapping nets

To construct the edges of OH corresponding to the
2-coloring of the tiling T by H, impose a motif on the
fundamental region ∆H = ∆∪g∆ of H, where g is chosen
such that the FR Condition is satis�ed.
Motif Construction. Suppose {h1, h2, . . . , hl} is a

generating set of H. Consider the B- and W -vertices
on ∆H , and denote them by b and w, respectively. For
each generator hi, connect the vertex b to the vertices
hib and hi

−1b using straight line segments. Similarly,
connect w to hiw and hi

−1w. The segment of the edges
(b, hib), (b, hi

−1b), (w, hiw), (w, hi
−1w) within ∆H to-

gether with the vertices w and b is the desired motif ∆mH

for OH . The edges (w, hiw) and (w, hi
−1w) are repre-

sented by dashed line segments.
Because of the FR Condition imposed on the choice of

the fundamental region ∆H of H, we are assured that the
tiles containing the images of vertices w and b intersect
∆H and the resulting edges are (possibly) minimized.
We place the B-edges above the W -edges whenever they
intersect in ∆mH as in Fig. 3.
We remark that the motif ∆mH is dependent on H

and on the set of generators chosen for H. For exam-
ple, a subgroup H1 of G(4, 4, 2) may be generated by
H1a = 〈QR,RP 〉, H1b = 〈QR,PQ〉, or H1c = 〈RP,PQ〉.
These generating sets result in the following fundamental
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Fig. 3. The motifs derived from three fundamental re-
gions (background) of H1: ∆mH1a (left), ∆mH1b (mid-
dle), ∆mH1c (right).

regions satisfying the FR Condition: ∆H1a
= ∆ ∪ R∆,

∆H1b
= ∆∪Q∆, and ∆H1c

= ∆∪P∆, respectively. They
yield three distinct motifs shown in Fig. 3.
Overlapping Nets Construction. To get the over-

lapping nets OH , we let H act on ∆mH . When black
edges abut, they are joined continuously to form the
B-lines of the B-net; similarly, when dashed edges abut,
they are joined continuously to form the W -lines of the
W -net.
We denote by Lb and Lw the sets of B-lines and

W -lines (or line segments), respectively, of OH . Now,
consider a subset I of the set Lb × Lw de�ned as:

I = {(`b, `w) ∈ Lb × Lw | `b and `w
are intersecting lines}.

Moreover, we interpret (`b, `w) as the intersection point
of the lines `b and `w. This means that the set I is
precisely the set of all intersection points of the B- and
W -lines in OH . We now de�ne a weaving using these
notations.
De�nition 1. A weaving is a triple (OH , I, ω) where

ω is a map from I to the two-point set {⊕,	}, called a
weaving map.
Let (`b, `w) ∈ I. If ω(`b, `w) = ⊕, then we say that

`b is above `w; while if ω(`b, `w) = 	, we say that `b is
below `w.
In other words, a weaving is merely an interlacement

of the B- and W -nets in OH . Denote a weaving derived
from the subgroup H with respect to a set of generators
of H by (OH , I, ω) or, simply, WH .
In the next section, we construct the �nal component

of a weaving WH , which is the weaving map ω.

4. From nets to weavings

Consider a motif ∆mH of overlapping nets OH . The
intersection points of the B- and W -edges within ∆mH

are referred to as IPs, and IPs in the same orbit of H are
said to be identi�able. Let us note that the elements of
the set I are just images of the IPs under the elements
of H. Hence, if we de�ne the weaving map ω on the IPs,
then we can naturally extend the mapping to I.
Weaving Construction. De�ne ω on the IPs of

∆mH by assigning ⊕ and 	 to them. If there are identi�-
able IPs, assign an identical symbol to each one of them.
Then, let H act on the decorated ∆mH , and assign values
(⊕ or 	) to the rest of the intersection points in I as fol-

lows: if an IP is given a certain symbol, then the elements
of its orbit under H will be given the same symbol.
Clearly, the following scenarios will not yield a (proper)

weaving.
No Weaving Scenarios (NWS)

1. ∆mH has only one IP.

2. All the IPs of ∆mH are identi�able.

We now outline the methodology for constructing
weavings from 2-colorings.
From Colorings to Weavings: The Methodology

1. Consider a tiling T := T (p, q, r) by triangles with
interior angles π/p, π/q, π/r, together with its cor-
responding triangle group G := G(p, q, r).

2. Get a 2-coloring of T using an index 2 subgroup
H of G. The symmetry group of such coloring is
CoreGH = H.

3. Choose the fundamental region of H to be ∆H =
∆∪ g∆ where g /∈ H and g is chosen such that FR
Condition is satis�ed.

4. Identify the B- and W -patches using the chamber
system, and then perform Vertex Set Construction.

5. Execute Motif Construction to get the motif ∆mH .
Then, construct the overlapping nets OH via Over-
lapping Nets Construction.

6. If none of the NWS occurs, carry outWeaving Con-
struction. Otherwise, consider an index 2 subgroup
N of H.

The motif ∆mN is composed of two copies of ∆mH ,
e�ectively yielding more IPs. The process is repeated if
any of the NWS occurs on ∆mN , either by considering
another index 2 subgroup of H or an index 2 subgroup
of N .

4.1. Equivalent weavings

We now de�ne when two weavings are equivalent. The
following is adapted from the de�nition given in [6].
De�nition 2. Let H and H ′ be subgroups of G which,

respectively, yield the weavings WH = (OH , I, ω) and
WH′ = (OH′ , I ′, ω′). Let Lb and Lw be the sets of B-
and W -lines in OH , and L′b and L′w be the sets of B-
and W -lines in OH′ .
We say that WH and WH′ are equivalent weavings if

there is a one-to-one correspondence φ between the ele-
ments of Lb and L′b, and between the elements of Lw and
L′w under which

1. OH and OH′ are combinatorially equivalent, and

2. ω(`b, `w) = ω′(φ(`b, `w)) ∀(`b, `w)H ∈ I, or

ω(`b, `w) = ω′(φ(`b, `w)) ∀(`b, `w)H ∈ I, where
⊕ = 	 and 	 = ⊕.
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The equivalence classes of weavings with respect to this
equivalence relation are called weaving patterns.
It is straightforward to show that if a weaving W can

be obtained from a weaving W ′ by some isometry of
the plane, then they are equivalent weavings. For ex-
ample, consider the weavings generated by the subgroup
H1 using its two sets of generators H1b = 〈QR,PQ〉 and
H1c = 〈RP,PQ〉 shown in Fig. 4. Observe that if we
rotate WH1b

about the centroid of � by 90◦ clockwise
and then re�ect along the vertical line passing through
that point, we get WH1c

. Thus, WH1b
and WH1c

are
equivalent.

Fig. 4. Equivalent weavings generated by H1: WH1b

(left), WH1c (right).

Suppose that N and K are conjugate subgroups in G;
that is, K = gNg−1 for some g ∈ G. It can be shown
that if ∆N is a fundamental region of N , then g∆N is a
fundamental region of K. Consequently, given a weaving
WN from N , we can derive a weaving WK of K which is
equivalent to WN . In particular, applying the isometry
g on WN results in the weaving WK .
Now suppose a subgroup H of G, with fundamental

region ∆H , yields a weaving WH generated by the dec-
orated motif ∆mH . A fundamental region of an index 2
subgroup N of H is a union of two copies of ∆H . Then
one can get a weaving WN by using the union of two
copies of the decorated ∆mH . In fact, the weavings WH

and WN are identical.
We summarize the discussion above in the following

proposition.
Proposition 1. Let H,K,N be subgroups of the tri-

angle group.

1. If W can be obtained from the weaving W ′ by
some isometry of the plane, then they are equiv-
alent weavings.

2. Suppose K and N are conjugate subgroups andWN

is a weaving generated by N , then K generates a
weaving WK which is equivalent to WN .

3. Suppose H yields a weaving WH and N is a sub-
group of H of even index, then N yields a weaving
WN which is equivalent (identical) to WH .

4.2. Example

The following are some of the weaving patterns gener-
ated from H2 = 〈R,Q, PRP 〉 and its subgroups.

The motif ∆mH2
has only one IP, so we consider

the index 2 subgroups of H2, and subsequently their
index 2 subgroups when NWS occur. We obtain
the above non-equivalent weaving patterns from index
4 subgroups of H2: N1 = 〈Q,R, PRPQRQPRP 〉,
N2 = 〈Q,RPRP,RQRPRQRP 〉, and N3 = 〈R,QRQ,
PRQRQP 〉. They are all index 2 subgroups of some in-
dex 2 subgroups of H2.
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