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Letter Frequencies in the Kolakoski Sequence
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The classical Kolakoski sequence is the unique sequence of two symbols {1, 2}, starting with 1, which is equal
to the sequence of lengths of consecutive segments of the same symbol (run lengths). We discuss here numerical
aspects of the calculation of the letter frequencies and how to �nd bounds for these frequencies.
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1. Introduction

The classical Kolakoski sequence K = (Kn)
∞
n=1 is the

unique sequence on the alphabet {1, 2} de�ned as the
sequence of its own symbols' run lengths starting with
a 1. The classical Kolakoski sequence was �rst studied
in a work by Oldenburger [1], where it appears as the
unique solution to the problem of a trajectory on the
alphabet {1, 2} which is identical to its exponent tra-
jectory. The name of the Kolakoski sequence, however,
originates from [2, 3]. In the On-Line Encyclopedia of
Integer Sequences [4], the Kolakoski sequence has entry
number A000002. The �rst letters of K are

K = 1 2 2 1 1 2 1 . . .

| / \ / \ | | / \ |
K = 1 2 2 1 1 2 1 2 2 1 . . .

(1)

There are several interesting questions, answered and
unanswered, on the properties of the classical Kolakoski
sequence; Kimberling presents several of these in [5].
One of the simplest, and yet unresolved, question is that
of the distribution of digits in K. If we let on be the
number of 1s in K up to and including position n, that
is on = |{i : Ki = 1, 1 ≤ i ≤ n}|, then the conjecture is

Conjecture. The limit limn→∞
on
n exists and is 1

2 .

Both parts of the conjecture, the existence and the
value, are still open. Several aspects of the conjecture
(along with other properties and questions regarding the
Kolakoski sequence) are considered by Dekking in [6�8];
see also the survey by Sing [9] and further references
therein.
The outline of this paper is that we �rst present a

highly memory e�cient algorithm for generating the Ko-
lakoski sequences, and with its help we calculate on up to
n = 1013. Thereafter we consider two di�erent methods
for �nding bounds of the fraction on/n, which hold for
all n larger than some N .

2. Generating the Kolakoski sequence

The Kolakoski sequence K can be generated by an al-
gorithm in amortised linear time that uses only a loga-
rithmic amount of memory (linear and logarithmic in the

number of symbols generated), as presented in [10], and
which we discuss here. Recall that amortised linear time
means that the average work to perform n operations is
made in linear time.

2.1. The algorithm

The idea in the algorithm is that if we set out only to
�nd on, we do not have to save the complete sequence
up to position n when stepping through the sequence K.
As in the intuitive way of generating K, we look back at
a previous position to see which symbol run to append.
However, this previous position is itself determined by a
letter even further back, and so on. If we keep track only
of these positions that we �look back at�, we can drasti-
cally reduce the amount of space needed. (If however the
space restriction is lifted, the calculation of the number
on can be accelerated, as presented by Rao [11].)
To get a hint on how this �looking back� can be done,

we take as a starting point a scheme, as in (1). We see
that the upper row de�nes (or conversely, may be de�ned
as) the run lengths of the symbols in the lower one. We
expand this scheme by adding more rows above and con-
necting each symbol to the symbol in the row above that
has (via run length) generated it. In this way, we obtain
a tree structure, as illustrated in Fig. 1, where K = 1K ′.

Fig. 1. Generating the Kolakoski sequence by looking
back at already generated symbols. The boxed letters
need to be stored. The scheme continues unboundedly
upwards.

We may thus interpret the letters in the Kolakoski se-
quence K as the leaves of a tree (the leaves are the sym-
bols in the bottom row in Fig. 1). Each internal node
in this tree structure is a symbol in an upper row inter-
preted as a run length. Each letter is connected to the
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letter above that has generated it (called an ancestor),
and also to the letter(s) below that it generates, termed
children. This tree structure continues upwards without
bound as we step through the symbols of K. However,
we only need to go up in the tree until we �nd an ances-
tor, to the leaf we are currently looking at, at a left-most
position.
The algorithm for �nding on can concisely be described

as an �in-order traverse� of this tree structure, where we
start from the lower left, and where we keep track of
the symbols we see in the leaves during the traversal.
While traversing, we add new ancestors when needed;
that is we build the tree as we traverse it. To reduce the
memory requirement, we dynamically generate and keep
track only of the part of the tree that we currently use
for the traversal. While doing so, we store the ancestors
along with an indicator that tells us which of its children
we have already traversed. To this end, we introduce
pointers Pk, which are assigned values from the set S =
{1, 2, 11, 22}. Let us note that here a run is de�ned as
a word from the set S. At any given time, the pointer
P0 holds the current run in the leaves and P1 holds the
ancestor to P0. Similarly, any Pk that has been initiated
holds the ancestor to Pk−1.
In [10], the following run time analysis result on the

above algorithm is proved.

Proposition. Let P (n) be the number of pointers used
by the algorithm to calculate on.

1. The amount of space used to �nd on is logarithmic
in n. That is, P (n) = O(log n).

2. The algorithm runs in (amortized) linear time.
That is, to �nd on we have to do an amount of
work of order O(n).

The main ideas in the proof of the proposition are
based on the use of the trivial bounds of the letters fre-
quencies

1

4
≤ on
tn
≤ 4

for n ≥ 2, where tn = n − on is the number of 2s up to
position n. This implies that if Pk holds the symbol at
position n then Pk+1 holds the symbol at at most posi-
tion 5

6n. By recursion, this implies a need for at most a
logarithmic amount of space.
The run time result is based on a similar argument,

plus the observation that we do not need to go higher in
the tree for each increment of P0. We only need to go
higher when Pk contains a single symbol.

2.2. Calculations

An implementation and run of the above algorithm
gives the result presented in Table I and in Fig. 2.
The output indicates that the fraction on/n should tend
to 1/2, when n grows, but clearly does not prove it. We
denote for the Kolakoski sequence the maximal deviation
of the proportion of 1s from 1

2 in a logarithmic decade by

D(n) = max
1
10n<i≤n

∣∣∣∣12 − oi
i

∣∣∣∣ ,
where oi is the number of 1s up to position i.

TABLE I

The number of 1s in pre�xes of the Kolakoski sequence.
The column with the number of 1s is the sequence
A195206 in the On-Line Encyclopedia of Integer Se-
quences [4].

n Number of 1s Pointers D(n)

101 5 4 1.667× 10−1

102 49 10 8.333× 10−2

103 502 16 1.351× 10−2

104 4 996 22 3.588× 10−3

105 49 972 27 5.481× 10−4

106 499 986 33 2.800× 10−4

107 5 000 046 39 3.892× 10−5

108 50 000 675 44 2.054× 10−5

109 500 001 223 50 8.586× 10−6

1010 4 999 997 671 56 2.152× 10−6

1011 50 000 001 587 61 4.453× 10−7

1012 500 000 050 701 67 2.140× 10−7

1013 5 000 000 008 159 73 6.774× 10−8

Fig. 2. A dynamic log�log plot around 1
2
of the fraction

of 1s in the Kolakoski sequence.

3. Bounds on the letter frequencies

The algorithm presented above only deals with the
letter distribution in the beginning of the Kolakoski se-
quence K but does not say anything about the long time
asymptotic behaviour of on/n. In the following sections,
we present two approaches, based on the same idea, that
give general bounds of the letter frequencies in K, with-
out assuming that the limit in the conjecture exists.
Both methods presented here are based on the con-

struction of a graph G, so that K is described as an in�-
nite path in G. By constructing larger and larger graphs,
we can extract more and more information about K, and
thereby, with the help of exact computer enumerations,
�nd bounds of the letter frequencies.

3.1. Induced graphs

We consider here an idea of Chvátal [12]. From the
Kolakoski sequence K we construct a graph Gd in the
following way; �x an integer d ≥ 1 and write d copies
of K under each other, so that the symbols in one row
indicate the run length in the sequence above. This is
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Fig. 3. Three copies of the Kolakoski sequence that in-
dicate how the graph G3 is constructed.

illustrated in Fig. 3 for d = 3. In the scheme in Fig. 3,
we look for columns of letters with maximal height, see
the vertical boxes. These columns (or words) are taken
as labels of the nodes in the induced graph G3, compare
Fig. 4. The arcs in G3 are labelled with the sub-word of
K in the top row of our scheme, which we see when going
from one maximal column to the next.
The Kolakoski sequence is now given by an in�nite

path through Gd, for any �xed d ≥ 1. An open and
interesting question concerning the graphs Gd is whether
they are strongly connected, that is whether there is a
path from each vertex to every other vertex.

Fig. 4. The graph G3 induced by the Kolakoski se-
quence. A cycle with highest number of 1s compared
to the total number of symbols in the cycle is found
in the lower right corner; the cycle over the nodes v121
and v211.

3.2. Transducers

We consider here an idea based on transducers; see the
web page by Rao [11]. The idea is based on the fact, as
noted in [13], that one can obtain the Kolakoski sequence
K by starting with 2 as a seed and iterate the two sub-
stitutions

µ0 :

{
1 7→ 1

2 7→ 11
, µ1 :

{
1 7→ 2

2 7→ 22

alternatively, i.e., µ0 substitutes letters on even positions
and µ1 letters on odd positions

2 7→ 22 7→ 2211 7→ 221121 7→ 221121221 7→ . . .

The alternations of substitutions can be described by the
�nite state transducer T1 in Fig. 5. A �nite state trans-
ducer (FST) is a �nite state machine with two tapes: an
input tape and an output tape. It works as follows: we
are currently in one state and read on one of the tapes,
then the transducer tells us, depending on what we read,
what to write on the second tape and to which state we
jump.
The sequence K is a �xed point to the transducer T1,

the other �xed point is K = 1K ′. By composing the

Fig. 5. The �nite state transducer T1 for the Kolakoski
sequence.

transducer T1 with itself we obtain T2 = T1 ◦ T1, see
Fig. 6. This easily generalises to higher level transducers
Tn = Tn−1 ◦ T1. The Kolakoski sequence is now, as for

Fig. 6. The transducer T2. A cycle with highest num-
ber of 1s compared to the total number of symbols in
the cycle is found on right side, the cycle over the nodes
v12 and v21.

the �rst described type of graphs, given by an in�nite
path through the vertices of Tn, for any �xed n ≥ 1.

3.3. Calculations

The graph Gd is equivalent to the transducer Td−1,
as there is a graph morphism η : V (Gd) → V (Td−1).
Therefore, it is enough to consider Gd. To obtain bounds
for the letter frequencies in K we look for a cycle in Gd

with highest ratio of 1s. This is since an in�nite path
in Gd describing K may in the worst case end in such
a cycle. Such a cycle then gives a bound of the letter
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frequencies. (Note that no path describing K can end
in a cycle, since this would imply that K ends with an
in�nite repetition of the same symbol.)
Let ud be the largest ratio of 1s to all symbols of any

cycle of the graph Gd (or in Td−1), that is

ud := max
c a cycle in Gd

number of 1s in c

total number of letters in c
.

In Table II, we present the value of ud for small values
of d, see also [11]. From the computer calculations, we
obtain that there is an N ≥ 1 such that

sup
n≥N

∣∣∣∣onn − 1

2

∣∣∣∣ ≤ 455920839

911696379
− 1

2
≤ 0.000080,

where on is the number of 1s among the �rst n letters in
the Kolakoski sequence. Let us note here that we do not
assume that the letter frequency exists.

TABLE II

The upper bound ud of the frequency of 1s in the
Kolakoski sequence induced by the graph Gd.

u2 = 2/3 ≈ 0.666667

u3 = 2/3 ≈ 0.666667

u4 = 5/9 ≈ 0.555556

u5 = 8/15 ≈ 0.533333

u6 = 36/69 ≈ 0.521739
...

u32 = 3688655/7375520 ≈ 0.500121

u33 = 3845003/7688497 ≈ 0.500098

u34 = 455920839/911696379 ≈ 0.500080

4. Summary

The �rst algorithm presented to generate the Kolakoski
sequence K is highly memory e�cient, but runs in lin-
ear time and it does not say anything of the long range
order of the letter frequency. The ideas to generate K
with graphs are much faster and give bounds on the long
range letter frequency. The drawback here is that they
require an exponential amount of space. Clearly, none
of the above described methods settle any part of the
Conjecture, they only serve as indications that it should
hold. A next step would be to look at properties of the
graphs to understand their structure, but this seems to
be a very hard and intricate problem.
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