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1. Introduction

The position k of a Bragg peak in the X-ray di�raction
picture of a material can be mathematically described as
a point for which γ̂({k}) > 0 [1, 2]. Here γ̂ is the Fourier
transform of the autocorrelation of the material which is
considered in an approximation in which the material is
modeled by a point set neglecting any kind of thermal
�uctuations or other time evolution. The approach to
point sets based on dynamical systems theory allows to
give a more catchy way of saying which points may be
the position of a Bragg peak: k may be the position of
a Bragg peak if the plane wave e ik·x with wave vector
k is in phase with the material. It roughly means that
the phase of the wave ought to be, up to a small error,
the same at x and at y provided the local con�gurations
around x and y are the same. A more precise formulation
of this phrase needs a little e�ort and will be made below
in a topological context (Def. 1).
In mathematical terms it means that k is a topological

eigenvalue and we call a Bragg peak topological if its
position corresponds to such an eigenvalue. Our intent is
to show how this topological aspect of di�raction can be
used to characterise point patterns.
Leaving details to later let us illustrate such a charac-

terisation by comparing the famous Fibonacci tiling with
its �scrambled� version. The Fibonacci tiling arises from
a cut and project pattern which looks similar on di�erent
scales. Its di�raction may be considered to be topologi-
cal in the sense that all its Bragg peaks are topological.
The technique of fusion [3] allows to construct modi�-
cations of the Fibonacci tiling by scrambling it slightly
up on each scale.† The scrambling is so rare that it is
statistically irrelevant and therefore does not modify the
di�raction. It a�ects however the topology. Depend-
ing on the choice of tile lengths, the Bragg peaks of the
scrambled version are either never topological‡, or only
some of them are topological.
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†See also the contribution of Frank for more details.
‡When saying that we exclude the Bragg peak at 0 from our

consideration as it is always topological.

Now our results can be phrased loosely in the following
way: the more topological Bragg peaks there are, the
more regular is the structure in a geometric sense. The
original Fibonacci tiling is perfectly regular as it comes
from a cut and project pattern. The scrambled version
which has still some topological Bragg peaks satis�es the
Meyer property, which means a strong constraint on the
set of di�erence vectors between points. The scrambled
version which does not have any topological Bragg peaks
does not satisfy the Meyer property and its geometry is
not yet well understood.
It would be interesting to �nd out whether this topo-

logical aspect of di�raction can be measured in an ex-
periment. While di�raction experiments are of statisti-
cal nature, and therefore insensitive to scrambling, the
Schrödinger equation is not and so scrambling might af-
fect the electronic properties.
Many aspects of the material presented here will be

explained in more detail in [4].

2. Topological Bragg peaks

In this section we explain more clearly what we mean
by a topological Bragg peak. The concept originates from
the study of point sets through their associated topologi-
cal dynamical systems. This approach to study point sets
is extremely useful catching also many aspects of di�rac-
tion, see [5] for more information. The recent monograph
on aperiodic order [6] contains a detailed discussion of the
mathematical theory of di�raction.

2.1. Point patterns

In this article we consider a particular class of point
sets to which we simply refer to as point patterns. Let
B(0, R) = {y ∈ Rn|‖x‖ ≤ R} be the ball of radius R
centered at the origin and, for a point set Λ, by Λ − x
the point set shifted by x, Λ−x = {y−x|y ∈ Λ}. A point
pattern Λ ⊂ Rn is a point set in Rn which satis�es the
following conditions:

(1) Λ is uniformly discrete, i.e. there is a minimal dis-
tance between points;

(2) Λ is relatively dense, i.e. there is R > 0 so that
any ball of radius R contains a point of Λ. Points
appear with bounded gaps;

(497)
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(3) Λ has �nite local complexity, i.e., up to translation,
one �nds only �nitely many local con�gurations of a
given size. More precisely the collection of so-called
R-patches {B(0, R)∩ (Λ−x),x ∈ Λ} is �nite, and
this for any choice of R;

(4) Λ is repetitive, i.e. local con�guration repeats inside
Λ with bounded gaps.

Are these conditions realistic for describing atomic posi-
tions of materials? Condition 1 certainly is. Condition 2
says that the material should not have arbitrarily large
holes. Condition 3 is the strongest restriction and repre-
sents an idealisation which one can �nd in cut and project
sets used to describe ideal quasicrystals, but it would not
allow for small random variations. Having required con-
dition 3, the last condition seems a reasonable one to
describe homogeneous materials. Let us add that from a
mathematical point of view, condition 3 is so far indis-
pensible in order to obtain the kind of rigidity results we
describe below.
Among the point patterns are some Meyer sets and cut

and project sets.

2.1.1. Meyer sets
A point set Λ ⊂ Rn is a Meyer set if it is relatively

dense and the set of di�erence vectors∆ = {x−y : x,y ∈
Λ} is uniformly discrete. This is a very elementary geo-
metric condition. Interestingly, the latter is equivalent
to an analytic condition, namely that for all choices of
ε > 0 the set Λε = {k ∈ R̂n : |e ik·x − 1| ≤ ε,∀x ∈ Λ} is
relatively dense. This says that the set of wave vectors
for which the phase of the plane wave is, up to an error
of ε, equal to 1 on all points of Λ, is relatively dense.
There are quite a few more equivalent conditions to the
above (see [7]) of which we mention one more: A set is
a Meyer set if it is a relatively dense subset of a cut and
project set.
An example of a Meyer set which is not a cut and

project set can be derived from the famous Thue�Morse
substitution 0 7→ 0110, 1 7→ 1001. Iterating this substi-
tution yields

0110100110010110100101100110100110010110011010010110100110

which should be thought of as a �nite part of a bi-in�nite
sequence. Now the subset Λ ⊂ Z given by the positions
of the digit 1 yields a Meyer set in R, since di�erence
vectors are integer multiples of the unit vector in R.
Any Meyer set is uniformly discrete, relatively dense

and has �nite local complexity. So repetitive Meyer sets
are point patterns.

2.1.2. Cut and project sets
We assume that the reader is familiar with the con-

cept of a cut and project set, as it has been used since
the early days of the discovery of quasicrystals for their
description. We use the name cut and project set synony-
mously for what is called model set in the mathematics
literature allowing the internal space of the construction
to be more general than a vector space, namely to be a
(locally compact) Abelian group (see [7]). If the accep-

tance domain (or atomic surface) has a boundary whose
measure is 0 (this rules out many acceptance domains
with fractal boundary) then the cut and project set is
called regular. Any cut and project set is a Meyer set.
Ignoring a little somewhat annoying detail we may say
that a cut and project set is repetitive.

2.2. Pattern equivariant functions
Given a point pattern Λ ⊂ Rn and a function f : Rn →

C we want to make precise what it means for f to de-
pend only on the local con�gurations in the pattern. We
have in mind a generalisation of the concept of a periodic
function to which it specialised if Λ were a periodic set.
We say that f : Rn → C is pattern equivariant� for

Λ if for all ε > 0 there exists R > 0 such that when-
ever the R-patches at x and at y are the same, then
|f(x) − f(y)| < ε. Here we mean that the R-patches
at x and at y are the same if B(0, R) ∩ (Λ − x) =
B(0, R)∩(Λ−y), that is, the local con�guration of size R
at x is the same as the one at y when they both have been
shifted to the origin. The example of a pattern equivari-
ant function which the reader should have in mind is
a potential energy function for a particle in a material
whose atomic positions are given by Λ each atom con-
tributing to the potential energy with its local potential.
De�nition 1. Let Btop denote the set of vectors k

for which the plane wave fk(x) = e ik·x is pattern equiv-
ariant for Λ. A Bragg peak is called topological if its
position k belongs to Btop.
Thus k ∈ Btop if the phase of the plane wave at a

point x is determined with more and more precision by
the local con�guration surrounding x; the larger the size
of the con�guration the more precise the phase is de-
termined. Any k ∈ Btop corresponds to a Bragg peak,
although perhaps an extinct one, that is, a Bragg peak
whose intensity is 0 [8]. In this sense Btop is the set of
positions of topological Bragg peaks for Λ. Taking into
account extinct Bragg peaks may appear somewhat ar-
ti�cial but we gain the bene�t that Btop forms a group.
De�nition 1 does not involve a statistical ingredient but
rests on continuity properties, which is why we call the
Bragg peak topological.

2.3. The dynamical system of a point pattern
It is most useful to study the dynamical system associ-

ated with a point pattern. There are several versions of it
which all more or less contain the same information. We
present here the algebra version and the version based on
a space: the continuous hull of Λ.

2.3.1. Algebra version
Consider the set AΛ of continuous functions f : Rn →

C which are pattern equivariant for the point pattern Λ.
AΛ is a commutative (C∗-) algebra under pointwise ad-
dition and multiplication. Moreover, the group of trans-
lations Rn acts on AΛ, that is, each vector of translation

�In the literature one �nds also the terminology weakly pattern

equivariant for this.
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x ∈ Rn gives rise to a map αx : AΛ → AΛ, namely

αx(f)(y) = f(y − x). (1)

This comes about as translation preserves the properties
of a function to be continuous and pattern equivariant.
The triple (AΛ,Rn, α) is called the (algebraic) topological
dynamical system associated with Λ. The name `dynami-
cal system' has nothing to do with a time evolution but is
simply used by mathematicians for the action of a group
on an algebra or a space (the group is in our case is Rn,
the group of space translations, and the action is α).

De�nition 2. An eigenvalue of the dynamical system
(AΛ,Rn, α) is a vector k ∈ Rn for which there exists a
non-zero element f ∈ AΛ (its eigenfunction) such that

αx(f) = e ik·xf. (2)

It follows that f must be a multiple of the plane wave,
f = cfk with c = f(0). Thus a position of a topologi-
cal Bragg peak is an eigenvalue of the dynamical system
(AΛ,Rn, α).
We now let Aeigen

Λ be the algebra generated by the
eigenfunctions to eigenvalues of the system (AΛ,Rn, α).
The property of being an eigenfunction is preserved under
translation and so we have a subsystem (Aeigen

Λ ,Rn, α) of
the system (AΛ,Rn, α). All what we will have to say

depends on the relation between Aeigen
Λ and AΛ.

2.3.2. Torus parametrisation

To each commutative C∗-algebra corresponds a topo-
logical space in such a way that the algebra can be seen as
the algebra of continuous functions over the space. This
space is called the Gelfand spectrum of the algebra. The
continuous hull ΩΛ of Λ is the Gelfand spectrum of AΛ,
that is, AΛ

∼= C(ΩΛ). It has been the subject of in-
tensive study. Its elements are the point patterns which
are locally indistinguishable from Λ, because they have
the same local con�gurations. From a physical point of
view, any element of ΩΛ is as good as Λ to describe the
material.

Now the action on AΛ becomes an action on ΩΛ:
αx(Λ

′) = Λ′ − x. The triple (ΩΛ,Rn, α) is the space
version of the dynamical system associated with Λ.

The Gelfand spectrum of Aeigen
Λ turns out to be a group

TΛ, in fact it is the (Pontrayagin) dual group of Btop. TΛ

is a torus, or a limit of tori. The inclusion of Aeigen
Λ in

AΛ as a subalgebra gives rise to a surjective map π :
ΩΛ → TΛ which commutes with the actions. This map π
is called the torus parametrisation. In the mathematical
literature one calls TΛ also the maximal equicontinuous
factor of ΩΛ. Our results below are based on the study
of π : ΩΛ → TΛ and in particular, how close it is to a
bijection.

2.3.3. Topological conjugacy

We say that two point patterns Λ and Λ′ are topologi-
cally conjugate if their associated dynamical systems are
topologically conjugate, that is, there exists a homeomor-
phism φ : ΩΛ → ΩΛ′ which commutes with the actions.
If moreover φ(Λ) = Λ′ then the topological conjugacy is
called pointed.

A well known example of a topological conjugacy is a
local derivation which goes both ways, one says that Λ
and Λ′ are mutually locally derivable in this case. Topo-
logically equivalent point patterns have the same dynam-
ical properties, in particular they have the same positions
of topological Bragg peaks and the same torus parame-
terization.

2.3.4. Di�raction and the dynamical system

We explain roughly how di�raction is related to the
eigenvalues of the dynamical system. More can be found
in the concise review [2] which includes also a list of
references to the original articles. There is an ergodic
probability measure µ on ΩΛ which has to do with the
physical phase in which the material is and brings in
the statistical aspect of di�raction. We may then look
for solutions to (2) which have eigenfunctions which do
not necessarily belong to AΛ, or equivalently to C(ΩΛ),
but to the larger space L2(ΩΛ, µ) of functions on ΩΛ

which are square integrable with respect to (w.r.t.) µ. We
may therefore have more solutions and a larger group of
eigenvalues B. To distinguish the two concepts of eigen-
values one calls the former topological eigenvalues and
the more general ones L2-eigenvalues¶ as their eigenfunc-
tion is square integrable but not necessarily continuous.
The main result says the following: The position of a
di�raction Bragg peak is an L2-eigenvalue. Not every
L2-eigenvalue needs to come from a di�raction Bragg
peak but the group B is generated by the positions of
the Bragg peaks. The elements of B which do not come
from a di�raction Bragg peak are interpreted as extinct
(invisible) Bragg peaks [8]. The positions of topologi-
cal Bragg peaks generate Btop which is a subgroup of B.
In this work, only Btop, that is, topological Bragg peaks
play a role.

3. Results

We will present two kinds of results. For the �rst kind
we assume that we have a repetitive Meyer set and ob-
tain a characterisation depending on how close the torus
parametrisation π : ΩΛ → TΛ is to a bijective map. For
the second kind we assume only that we have a point
pattern obtaining a partial classi�cation of point pat-
terns up to topological conjugacy. Recall that the torus
parametrisation is always surjective.

3.1. Characterisation of repetitive Meyer sets

Theorem 1. Let Λ ⊂ Rn be a repetitive Meyer set.
Then Btop contains n linearly independent vectors [9].
In other words, TΛ is at least as large as an n-torus Tn.
Furthermore:

(1) The torus parametrisation π is injective on at least
one point if and only if Λ is a cut and project
set [10].

¶The expression measurable eigenvalue is also used.
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(2) The torus parametrisation π is almost everywhere
injective‖ if and only if Λ is a regular cut and
project set [11].

(3) π is bijective if and only if Λ is a periodic set (has
n independent periods) [11, 12].

3.2. Classi�cation of point patterns up to topological
conjugacy

Theorem 2 ([9]). Let Λ ⊂ Rn be a point pattern. Λ
is topologically conjugate to a repetitive Meyer set if and
only if Btop contains n linearly independent vectors.
Corollary 1. Let Λ ⊂ Rn be a point pattern.

(1) The torus parametrisation π is injective on at least
one point if and only if Λ is topologically conjugate
to a cut and project set.

(2) The torus parametrisation π is almost everywhere
injective if and only if Λ is topologically conjugate
to a regular cut and project set.

(3) π is bijective if and only if Λ is a periodic set (has
n independent periods).

3.3. Beyond cut and project sets

In order to treat also cases in which there is no point
on which π is injective we consider three numbers which
measure how close ΩΛ sits above TΛ. The �rst two are the
maximal rank Mr, and the minimal rank mr, which are
the largest, respectively smallest, number of elements the
pre-image π−1(t) of t can have when varying over t ∈ TΛ.
The really interesting third rank is the so-called coinci-
dence rank. To de�ne it we �rst introduce the relation
that two elements Λ1,Λ2 ∈ ΩΛ are proximal (Λ1 ∼ Λ2)
if there exists a sequence (xk)k∈N ⊂ Rn so that Λ1 −xk,
and Λ2 − xk coincide on the patch of radius k up to a
translation of size smaller than 1

k . This notion is more
intuitive for the Meyer sets: two Meyer sets Λ1,Λ2 ∈ ΩΛ

are proximal if and only if Λ1 and Λ2 agree on larger
and larger balls. Now the coincidence rank cr is de�ned
to be the largest possible cardinality m of a collection
of elements Λ1, . . . ,Λm ∈ π−1(t) which satisfy Λi 6∼ Λj
(i 6= j). This number turns out not to depend on t.
Note that cr ≤ mr ≤ Mr and that the case mr = 1

corresponds to cut and project sets. Furthermore cr =
mr whenever ΩΛ contains an element which is not prox-
imal to any other element. Primitive Meyer substitution
tilings yield examples for which cr = mr ≤Mr <∞ [13].
The Thue�Morse substitution has cr = 2.
Theorem 3 ([4]). Let Λ be a non-periodic point pat-

tern. If cr is �nite then Λ is topologically conjugate to a
Meyer set and Btop ⊂ Rn is dense.

‖This means that there exists a subset T0
Λ ⊂ TΛ of measure 1

such that each point of T0
Λ has a unique pre-image.

3.4. How far does (ΩΛ,Rn) characterize Λ?

The above classi�cation of point patterns is up to topo-
logical conjugacy. We therefore need to understand to
which extent topological conjugacy preserves the proper-
ties of a point set, like for instance the Meyer property.
The �rst result in this direction is the following:
Theorem 4 ([9]). Let Λ ⊂ Rn be a point pattern. Λ

and Λ′ are pointed topologically conjugate whenever for
all ε > 0 exists a point pattern Λε such that Λ and Λε
are mutually locally derivable and Λε and Λ′ are shape
conjugate. Moreover, within ε of each point of Λε is a
point of Λ′ and vice versa.
Here, a shape conjugation is a deformation of the pat-

tern which preserves �nite local complexity and induces a
topological conjugacy. This notion may be formulated in
the context of pattern equivariant cohomology [14, 15].
In fact, the shape conjugations of Λ are classi�ed by a
subgroup of the �rst cohomology group of Λ. First in-
vestigations show that this group is rather small and so
there are few shape conjugations. Whereas shape con-
jugations of cut and project sets with convex polyhedral
acceptance domain yield again cut and project sets, we
also found examples of more general cut and project sets
which allow for shape conjugations yielding point pat-
terns which are not even Meyer sets [16].
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