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This paper describes how one can use four standing wave laser �elds to realize a two dimensional optical
quasicrystal with eight-fold symmetry, closely related to the well-known octagonal or Ammann-Beenker tiling
quasicrystal. We describe the structure and we outline the main features of an e�ective tight-binding model for
atoms in this optical quasicrystal. Such a system, if realized experimentally, should provide valuable insights into
the quantum properties of quasicrystals.
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1. Introduction

This paper describes how one can use four standing
wave laser �elds to realize a two-dimensional optical qua-
sicrystal with eightfold symmetry, closely related to the
well-known octagonal or Ammann�Beenker tiling qua-
sicrystal [1]. We describe the structure and its properties,
and the e�ective tight-binding model for atoms in this op-
tical quasicrystal. Such a system, if realized experimen-
tally, should provide valuable insights into the quantum
properties of quasicrystals. This would represent a sig-
ni�cant progress, since there are very few experimental
realizations of simple quasiperiodic structures, whereas
there have been many theoretical studies of the physi-
cal properties of quasicrystals for tilings in one, two and
three dimensions.

2. Laser intensity �eld in the xy plane

We consider a region in the xy plane where standing
waves have been set up using four laser beams, and four
mirrors, as shown in Fig. 1. We assume that all the beams

Fig. 1. Laser and mirror con�guration in the xy plane.

are polarized in the direction perpendicular to this plane.
Assuming that all the lasers are of equal intensity I0, but
with di�erent phase shifts, φn, the total intensity is given
by I(r) = I0[

∑4
n=1 cos(kn · r + φn)]

2, where r = (x, y)
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and the four wave vectors kn, directed along angles nπ/4,
have the norm k = 2π/λ where λ is the laser wavelength.
An atom subjected to such a standing wave can be prefer-
entially attracted to either the local maxima (�red detun-
ing�), or the minima (�blue detuning�) of the laser �eld
(see [2] for details). As de�ned above, I(r) is an example
of a quasiperiodic function, the theory of which goes back
to Bohr and Besicovitch [3, 4]. Quasiperiodic potentials
have been studied before: for interacting bosonic atoms
in one dimension [5 or with 10-fold symmetry [6, 7] as
well as for colloidal systems, as in [8]. ], However there
has not been, to our knowledge, any experimental real-
izations of an optical quasicrystal, with information on
atomic positions, nor of a corresponding tight-binding
model.

For strong enough potential, and low enough tempera-
ture, atoms will be localized at the local maxima, in the

Fig. 2. (top) Optical quasicrystal tiling for (Im −
Ic)/Im = 0.17 showing some of the defect con�gura-
tions (see text). (bottom) The octagonal window for
the OT is shown, along with three concentric grey cir-
cular windows for the OQ for three special values of Ic.
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case of a red-detuned lattice. We assume that the occu-
pied sites are those local maxima for which I(rj) ≥ Ic
where Ic is a cut-o�. Figure 2 top shows an example of
the type of structure obtained for a particular choice of
the cut-o�. The edge-length depends only on the laser
wavelength λ and α = 1+

√
2 is the �silver mean�. As the

cut-o� Ic increases and approaches the maximum value
Im = 16|I0|, fewer peaks are occupied, and the distance
between occupied sites increases. Figure 2a shows that
the tiles appearing in the optical system are those found
in the standard octagonal tiling (OT), whose eightfold
symmetry and self-similarity under in�ation are shared
by the optical quasicrystal (OQ).

3. Four-dimensional model for the optical

quasicrystal

The wave vectors of the laser beams, kn, can be re-
garded as projections in the xy plane of orthogonal four-
-dimensional vectors Kn where K =

√
2k. Whereas

two-dimensional lattices do not possess eightfold rota-
tional symmetry, the four-dimensional hypercubic lat-
tice does. The 4D space is, moreover, the direct sum
of two orthogonal invariant planes P and P ′, having an
irrational orientation with respect to the standard ba-
sis. One can write R = (r, r′), where r is the projection
of a given point in P , and r′ is its projection in P ′. If
K = (k,k′) is another vector, the scalar product writes
K ·R =

∑
KnRn = k · r + k′ · r′ by orthogonality of P

and P ′.
The optical intensity in the xy plane can be obtained

from a 4D periodic function: I(R) = I0[
∑4

n=1 cos(Kn ·
R)]2 (where the phases are not written as their e�ect only
amounts to a global 4D translation). The maxima of this
function lie on the vertices of a body centered cubic (bcc)
lattice, whose basis vectors, when projected in the xy
plane are turned by angles of 3π/8 and π/8 with respect
to the x axis, as can be seen in the tiling of Fig. 2 top.
For large Ic, the selection rule, I(rj) ≥ Ic de�nes small,
approximately spherical regions around every point of
the bcc lattice. These correspond to �atomic surfaces� in
the cut-and-project method, and their projection onto P ′

de�nes the selection window, D, a nearly circular disk.
The selection window of the standard octagonal tiling is
an octagon W , shown in Fig. 2 bottom, with a series of
smaller (by even powers of α) octagons for the in�ated
tilings. The optical quasicrystal is formed for Ic such
that D and W have the same area (see Fig. 2 bottom).
Further details on this theoretical model can be found
in [9]. The OT and the OQ thus di�er slightly due to their
selection windows, giving rise to defects, as can be seen
in Fig. 2 top, namely (i) some missing sites, whence the
empty octagons and hexagons, and (ii) some close-spaced
twin-pairs. Such pairs of sites are conjugated under a
phason �ip (local atomic jump due to phason modes in
the quasicrystal [10]). Adding higher harmonics to I(r)
would ensure a better overlap of windows. Alternatively,
one could add repulsive interactions between particles to
achieve the same result.

4. E�ective tight-binding model

At low temperature, atoms occupy the lowest energy
state of their potential wells and one can use the ba-
sis set of the Wannier type localized wave functions. In
this basis the diagonal matrix elements of the Hamil-
tonian are εi = 〈i|H|i〉, and the o�-diagonal elements,
tij = −〈i|H|j〉 correspond to the amplitude of tunnelling
between sites i and j and depends very strongly on the
pair of sites. The simplest noninteracting model of par-
ticles in the OQ is thus described by a hopping Hamilto-
nian of the form

H = −
∑
〈i,j〉

tij(a
†
iaj + a†jai) +

N∑
i=1

εia
†
iai, (1)

where the operator ai (a
†
i ) annihilates (creates) a particle

at site i of the OQ, and sites are labeled i, j = 1, . . . , N ,
where N is the total number of lattice sites. In the ki-
netic (�rst) term, it is su�cient to consider a small sub-
set of hoppings between nearby sites i and j. In the OQ,
the two smallest distances are the short diagonal of the
rhombus, and the edge. There are in addition hopping
terms between the twin-pairs, but the latter can be elim-
inated by assuming a smooth cuto�, and turning on a
weak repulsive interaction as mentioned earlier. The de-
termination of the typical values of hopping amplitudes
for edge and diagonal hops are left for future work. We
note that many results are known for the edge hopping
Hamiltonian on the octagonal tiling: for the spectrum
and wavefunctions [11�13], for local densities of states
and the Ruderman�Kittel�Kasuya�Yosida (RKKY) in-
teractions [14], for the statistics of the energy levels (re-
viewed in [15]), for quantum dynamics [16], e�ect of the
Hubbard interaction and the Heisenberg model [17�19].

5. Summary and discussion

We have discussed the structure and tight-binding
model of an 8-fold optical quasicrystal and related it to
the well-known octagonal tiling. It is in principle easier
to realize experimentally, as well as being simpler con-
ceptually, than 10-fold systems generated using �ve laser
beams, and so, provides an ideal system in which to study
the classical and quantum physics of quasiperiodic struc-
tures.
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