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We put forward a �nite element method for static problems of cubic quasicrystals by variation of a suitable
general potential functional. As an example we study a quasicrystal column containing a penny-shaped crack. The
comparison with analytical results shows that the precision and e�ciency of the numerical solution are satisfactory.
The procedure can be used to solve more complicated boundary value problems and can be extended towards more
sophisticated methods of crack tip loading analysis.
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1. Introduction

A cubic quasicrystal is an important instance of a
three-dimensional (3D) quasicrystal (QC). It is a 3D
solid structure quasiperiodic in three orthogonal direc-
tions that supports simultaneously phonon and phason
�elds [1]. Analytical solutions for plane or 3D problems
of these QCs with dislocations or cracks under simple
boundary conditions have been obtained in terms of sev-
eral methods such as Green's functions and displacement
potentials [2, 3]. However, due to the large number of
�eld variables and �eld equations involved in the elastic-
ity theory of 3D QCs analytical solutions for 3D complex
boundary value problems meet with tremendous di�cul-
ties.
In this paper, a �nite element algorithm for static prob-

lems of cubic quasicrystals is derived from the variation
of a kind of general potential function for QCs. A quasi-
crystal column containing a penny-shaped crack is inves-
tigated to verify the validity of the numerical method.

2. Basic equations

Within the theory of elasticity of QCs, displacements
are denoted as ui (i = 1, 2, 3) in the phonon �eld and
wi in the phason �eld, both of which depend on the co-
ordinate x in the real space. The phonon strain εij and
phason strain wij of cubic QCs are given by the following
equations:

εij = (∂jui + ∂iuj) /2, wij = (∂jwi + ∂iwj) /2, (2.1)

where ∂j = ∂/∂xj , and the subscripts j = 1, 2, 3.
The phonon stress σij and phason stress Hij are re-

spectively given by linear elasticity of cubic QCs [4]. We
arrange the stress components in the following vector as:(

σij
Hij

)
=
{
σ11, σ22, σ33, σ23, σ31, σ12,

H11, H22, H33, H23, H31, H12

}T
, (2.2)
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and the corresponding strain component can also be ar-
ranged according to the same order as(

εij
wij

)
=
{
ε11, ε22, ε33, γ23, γ31, γ12,

w11, w22, w33, η23, η31, η12
}T
, (2.3)

where the superscript T represents the transpose, γij =
2εij(i 6= j), and ηij = 2wij(i 6= j). The constitutive rela-
tions of cubic QCs can be written as(

σij
Hij

)
= [D]

(
εij
wij

)
, (2.4)

where [D] =

[
[C] [R]

[R]
T

[K]

]
, and

[C] =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


,

[R] =



R1 R2 R2 0 0 0

R2 R1 R2 0 0 0

R2 R2 R1 0 0 0

0 0 0 R3 0 0

0 0 0 0 R3 0

0 0 0 0 0 R3


,

[K] =



K11 K12 K12 0 0 0

K12 K11 K12 0 0 0

K12 K12 K11 0 0 0

0 0 0 K44 0 0

0 0 0 0 K44 0

0 0 0 0 0 K44


.

C11, C12, C44 represent the elastic constants in phonon
�eld, K11,K12,K44 are the elastic constants in phason
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�eld, and R1, R2, R3 are the phonon�phason coupling
elastic constants.
The static equilibrium equations are

∂jσij + fi = 0, ∂jHij + gi = 0, (2.5)

where fi and gi are, respectively, the body forces in the
phonon and phason �elds.
For a boundary value problems in a speci�c domain

Ω , Γt and Γu, respectively, are used to denote the stress
and displacement boundaries. Then, the above formulae
are de�ned in any interior point of the domain Ω . At
the boundaries Γt and Γu, the stresses and displacements
satisfy the following boundary conditions:{

σijnj = Ti,

Hijnj = hi,
(x1, x2, x3) ∈ Γt,{

ui = ūi,

wi = w̄i,
(x1, x2, x3) ∈ Γu, (2.6)

where Ti and hi, respectively, are the traction vectors
in the phonon and phason �elds at the boundary Γt, nj
is the unit outward normal vector at any point of the
boundary Γt, and ūi and w̄i are the given displacements
at the boundary Γu.

3. Finite element formulation for static elasticity

of cubic QCs

In Ref. [1], Fan has extended the minimum potential
energy principle of classical elasticity to describe the elas-
ticity of QCs. For su�ciently smooth boundaries and if
all ui and wi satisfy Eq. (2.1) and displacement bound-
ary conditions Eq. (2.6), the energy functional of cubic
QCs reads

Π =

∫
Ω

(
εij
wij

)
[D] {εij , wij} dΩ

−
∫
Ω

(fiui + giwi)dΩ −
∫
Γt

(Tiui + hiwi)dΓ . (3.1)

Divide the QC body in the domain Ω into M sub-
-domains or elements Ω (m), where the superscript m is
the element number and m = 1, . . . ,M , there is Ω =∑M
m=1 Ω

(m). The degree of freedom of every node is six,
that is {u} = {u1, u2, u3, w1, w2, w3}T.
Applying the variation of the discrete form of the func-

tional Π ∗, we obtain the following algebraic system of
equations:

[A] {ũ} = [F ], (3.2)

where

[A] =

M∑
m=1

∫
Ω(m)

[B]T[D][B]dΩ , [Bα] = [L] [Iα] ,

[F ] =

M∑
m=1

(∫
Ω(m)

[I]T

{
f (m)

g(m)

}
dΩ

+

∫
Γ

(m)
t

[I]T

{
T (m)

h(m)

}
dΓ

)
, (3.3)

and {ũ} = {{ũ(1)}, {ũ(2)}, . . . {ũ(N)}}T is the displace-
ment vector of all nodes in the domain Ω , N is the total
number of nodes, [Iα] is the element interpolation ma-
trix, α is the node number, and [L] is the element strain
di�erential operator matrix, i.e.,

[Iα] =



Iα 0 0 0 0 0

0 Iα 0 0 0 0

0 0 Iα 0 0 0

0 0 0 Iα 0 0

0 0 0 0 Iα 0

0 0 0 0 0 Iα


,

[L] =



∂1 0 0 0 ∂3 ∂2 0 0 0 0 0 0

0 ∂2 0 ∂3 0 ∂1 0 0 0 0 0 0

0 0 ∂3 ∂2 ∂1 0 0 0 0 0 0 0

0 0 0 0 0 0 ∂1 0 0 0 ∂3 ∂2
0 0 0 0 0 0 0 ∂2 0 ∂3 0 ∂1
0 0 0 0 0 0 0 0 ∂3 ∂2 ∂1 0



T

.

(3.4)

The stress �elds of cubic QCs in the m-th element can
be evaluated at the Gauss integral points through the
element node displacement components as follows(

σij
Hij

)(m)

= [D][B]
{
ũ(m)

}
. (3.5)

In our computations, we use 20-node brick elements
and 27 Gaussian points to perform the integrations
in Eq. (3.3).

4. A column containing a penny-shaped crack

subjected to a tension

Consider a QC column containing a penny-shaped
crack subjected to a tension P0 as shown in Fig. 1a, where
the radius of crack a is 1 mm, the radius of the column
is 20 mm, the height is 60 mm, and P0 = 0.1 GPa. Due
to the symmetry of the specimen, only the upper 1/4
part has to be modeled, and the �nite element model
is shown in Fig. 1b. A layer of elements with 0.1 mm
height is placed at the bottom of the model in order
to conveniently analyze the stress intensity factor of the
crack. The elements related to the crack tip are degener-
ated in terms of singular quarter-point brick elements [5].
The boundary condition of the upper surface is σz = P0.
Other surfaces of the model are processed according to
symmetry of the column.
Because elastic constants for cubic QCs are not avail-

able presently [6], the material parameters are assumed
as follows: C11 = 4 GPa, C12 = 2 GPa, C44 = 3 GPa,
R1 = −1 GPa, R2 = 0.7 GPa, R3 = 0.5 GPa, K1 =
10 GPa, K2 = −7 GPa K3 = 60 GPa.
Due to the symmetry, the stress and displacement

�elds in every vertical cross-section containing the axis
z are the same. The phonon stress ratio σz/P0 at the
Gauss integration points of the element layer in the plane
x = 0 is given in Fig. 2a. The stress ratio at the crack
tip is 26.6. Along with the increase of the ratio (r−a)/a,
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Fig. 1. Penny-shaped crack subjected to a tension in a
cubic QC.

Fig. 2. (a) Phonon stress ratio σz/P0; (b) stress inten-

sity factor (K
‖
1 )s/P0 from di�erent Gauss points (unit:√

mm).

the stress ratio decreases rapidly and �nally approaches
1.0 which satis�es the stress boundary condition. From
Ref. [3], the phonon stress intensity factor for a penny-
-crack under a tension yields

K
‖
I = lim

r→a+

[√
2π(r − a)σz(r, 0)

]
= 2
√
πaP0/π, (4.1)

where the last item is only valid for an in�nite domain.
Because the boundary of the column is very far from the
crack, Eq. (4.1) is suitable for the column. Substitut-
ing a and P0 into Eq. (4.1), the stress intensity factor is
0.1128 MPa

√
mm. On the other hand, the least-squares

method [7] based on the stresses σz at element Gauss
points is implemented to calculate the stress intensity
factor from numerical solutions by the following equa-
tion:

K
‖
1 ≈

∑
(rs−a)

∑
(rs−a)

(
K

‖
1

)
s
−
∑

(rs−a)
∑(

K
‖
1

)
s

[
∑

(rs−a)]2−Q
∑

(rs−a)2
,(

K
‖
1

)
s

=
√

2π (rs − a) (σz)s , (4.2)

where the subscript s denotes the number of the Gauss
point, and s = 1, 2, . . . , Q (Fig. 2b) gives the relations

of (K
‖
1 )s/P0 and (rs − a)/a. The Gauss points in the

domain 0.05 < (rs − a)/a < 0.4 are chosen to determine

the stress intensity factor K
‖
1 . The intensity factor is ob-

tained as 0.1149 MPa
√

mm. Compared to the analytical
value 0.1128 MPa

√
mm, the corresponding error is 1.9%,

con�rming the accuracy of the numerical calculations.

5. Conclusions

Based on the variation of the general potential func-
tion of QCs, the 3D �nite element formulation for cubic
QCs is developed in this paper. The reliability of the pro-
cedure is veri�ed by a column containing a penny-crack
subjected to a tension. From the comparison of the an-
alytical and numerical stress intensity factors, it can be
seen that the numerical solutions are consistent with the
analytical results. The procedure can be used to solve
more complicated boundary value problems and can be
extended towards more sophisticated methods of crack
tip loading analysis.
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