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1. Introduction

The pentagonal Penrose tiling P1 (PPT in what fol-
lows) was introduced by Roger Penrose and published in
1974 [1]. This tiling contains �ve prototiles. Eventually,
Penrose reduced the number of prototiles to two convex
ones and thus constructed the P3 tiling, better known
as the rhombic Penrose tiling (RPT in what follows) [2].
Both these tilings belong to the Penrose LI class (for
�local isomorphism� or much better �local indistiguisha-
bility�) of tilings (PLI in what follows) along with some
other tilings like the hexagon-boat-star (HBS) tiling or
the kite and dart tiling P2. It has been shown by Kucz-
era et al. [3] that for the structure analysis of decagonal
quasicrystals (dQCs) it is the easiest to use the decorated
RPT; however, but for a better explanation and under-
standing of the structure the decoration of the prototiles
can be �translated� to any other tiling within the PLI
class. This means that the long range order is the same
for all PLI tilings. Hereafter, whenever the term �Penrose
tiling� is used, it refers to the rhombic Penrose tiling.
PT can be used as a model for the re�nement proce-

dure of dQCs. It has been successfully applied to the
structure optimization of various decagonal phases [3, 4].
GPT [5] is an extension of PT, its prototiles are still the
two Penrose rhombs and the local �vefold symmetry is
preserved. However, its matching rules and its structure
depend on a certain continuous parameter ranging from
0 to 1. Therefore, there is an uncountable in�nity of dif-
ferent GPTs. GPT is a promising alternative instead of
PT as a quasilattice for the description dQC structures;
it would allow to go beyond the PLI class of tilings.

2. Generalized Penrose tiling

In the higher dimensional (nD) approach, PT is ob-
tained by projecting a 5D hypercubic lattice through a
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Fig. 1. (a) The ASs of PT, (b) the ASs of GPT, shift
= 0.5.

window consisting of four pentagons, called the atomic
surfaces (ASs) in the perpendicular space. The vertices
of these pentagons together with two additional points
form a rhombicosahedron (Fig. 1a). The shape of the
ASs is an e�ect of positioning the projection strip in nD
space in such a way, that it contains one 5D hypercubic
unit cell and its boundaries are in the nodes of the lat-
tice. Shifting the projection strip by a unit vector along
the body diagonal of the rhombicosahedron will result in
a coordinate change of the vertices of the ASs while their
shape will remain unchanged and the structure generated
by a projection through such a window will still be the
PT.

The GPT is obtained by shifting the projection strip
along the body diagonal of the rhombicosahedron by a
fraction of a unit vector. The ASs constructed in this
way will still be bounded by the same rhombicosahedron.
However, their vertices will no longer match the vertices
of the rhombicosahedron (Fig. 1b). In other words the
ASs in Fig. 1a are shifted along the body diagonal of the
rhombicosahedron [6, 7]. Three of the previously pentag-
onal ASs will become decagons (equilateral only for the
shift equal to 0.5), one will remain pentagonal, and addi-
tionally one more pentagon will be created (for PT it is a
single point). A projection of the 5D hypercubic lattice
through a window consisting of these �ve polygons will
generate the GPT whose structure will depend on the
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shift parameter. Two examples of GPT, for shifts equal
to 0.2 and 0.5 are shown in Fig. 2a and b, respectively.

Fig. 2. (a) The GPT, shift = 0.2, (b) the GPT, shift
= 0.5.

Fig. 3. Examples of PT matching rules breaking in the
GPT.

Fig. 4. Rhombs con�gurations in PT.

The prototiles of the GPT are still thick and thin
rhombs but the matching rules of the tiling are di�er-
ent. The PT rules are not applicable to GPT (Fig. 3).
The eight possible vertex con�gurations of PT (Fig. 4)
are not su�cient any more, new vertex con�gurations

Fig. 5. Examples of new rhombs con�gurations in
GPT, shift = 0.2.

Fig. 6. Examples of new rhombs con�gurations in
GPT, shift = 0.5.

are the result of the shape change of ASs and the ap-
pearance of a new AS (additional pentagon � upper or
lower in Fig. 1b). A few examples of new vertex con�g-
urations are shown in Figs. 5 and 6. For each value of
the shift parameter di�erent set of vertex con�gurations
(vertex atlas) will be created.

For each of the two presented GPTs we have calcu-
lated the average unit cell (AUC) [8] using the reciprocal
space vectors of indices (−1,−3,−3,−1), (2, 1,−1,−2),
and projecting 6000 points. The obtained probability

Fig. 7. (a) The AUC for GPT, shift z = 0.2, (b) the
AUC for GPT, shift z = 0.5.
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distributions (Fig. 7a and b) show the shapes of three
decagons and two pentagons that correspond to the shape
of ASs. The result was to be expected, because the AUC
is an oblique projection of the ASs onto physical space [8].

3. Structure factor

The derivation of an analytical formula for structure
factor for an empty GPT tiling (with no decoration) is
made similarly to the derivation for the PT [9]. The
positions of GPT di�raction peaks are identical as in PT
and given by [9]:

kx =
2π

5a
[−h1 − h4 + τ(h1 − h2 − h3 + h4)],

ky =
2π

5a

√
τ + 2[h1 − h2 + h3 − h4 + τ(h2 − h3)],

kx⊥ =
2π

5a
[−h2 − h3 + τ(−h1 + h2 + h3 − h4)]

ky⊥ =
2π

5a

√
τ + 2[−h1 − h2 + h3 + h4 + τ(h1 − h4)],

kz⊥ =
2π

5a
(h1 + h2 + h3 + h4). (1)

Their intensities are calculated as the square modulus
of the structure factor F . We start the structure factor
calculation from its de�nition:

F (kx, ky) =

∞∑
j=1

exp(i(kxxj + kyyj)), (2)

where (kx, ky) is the reciprocal space vector in physical
space (xj , yj) is the position of the j-th atom in physical
space.
We can use the following relationship to move from

physical space to perpendicular space: exp(ik · r) = 1.
This allows us to write

kxx+ kyy = −(kx⊥x⊥ + ky⊥y⊥ + kz⊥z⊥), (3)

where (kx⊥ , ky⊥ , kz⊥) is a reciprocal space vector in per-
pendicular space (x⊥, y⊥, z⊥) is the position of an atom
in perpendicular space.
In spite of the fact that we calculate the structure fac-

tor for a reciprocal space vector in physical space the
structure factor value now only depends on the perpen-
dicular part of the reciprocal space vector

F (kx, ky) =

∞∑
j=1

exp(− i(kx⊥x⊥ + ky⊥y⊥ + kz⊥z⊥)).

(4)

This in�nite sum is con�ned to a region bounded by
the edges of the ASs. Points in this region are distributed
quasicontinuously; this allows us to replace the sum by
an integral. At the same time z⊥ has only four values
for PT and �ve for GPT; this in turn allows us to write
it as a sum of �ve surface integrals. In addition, because
we calculate the transform for an empty GPT lattice we
can simplify Eq. (4) to

F (kx, ky) = C

5∑
z⊥=1

exp(− ikz⊥z⊥)

×
∫∫

AS

exp(− i(kx⊥x⊥ + ky⊥y⊥))dx⊥dy⊥, (5)

kz⊥z⊥ =
2π

5
(h1 + h2 + h3 + h4)z⊥. (6)

The product of kz⊥z⊥ is equal to the multiples of 0.4π
and can only be equal to one of the �ve values: 0, 0.4π,
0.8π, 1.2π or 1.6π.
The next step is the calculation of the surface integrals

over the ASs. The ASs can be divided into triangles. The
transform T of a single triangle is given by

T =

∫∫
∆

exp(− i(kx⊥x⊥ + ky⊥y⊥)]dx⊥dy⊥. (7)

After integration we obtain

T =
1

ky⊥
[D12(E2 − E1) +D23(E3 − E2)

−D13(E3 − E1)], (8)

where

Ej = exp(− i(kx⊥xj⊥ + ky⊥yj⊥)),

Dij =
1

kx⊥ + ky⊥aij
, aij =

yi⊥ − yj⊥
xi⊥ − xj⊥

(9)

and (xi⊥yi⊥) are the positions of ASs vertices in perpen-
dicular space.
The following result may be used to calculate the trans-

form of a pentagon or decagon by substituting the co-
ordinates of the remaining triangles. The formula can
be further simpli�ed by noticing that the element of
D12(E2−E1) for triangle j is equal to the � D13(E3−E1)
element of the triangle j + 1.
The resulting structure factor is given by formula (10).

It allows us to exactly calculate its value for a given recip-
rocal space vector (kx, ky) without numerical calculation
of integrals

F (kx, ky) = C

5∑
z⊥=1

[
exp(− ikz⊥z⊥)

×
N∑
j=0

Dj,j+1(Ej+1 − Ej)
ky⊥

]
, (10)

where N is equal to 4 or 9 depending on whether AS is
a pentagon or decagon.

4. Di�raction pattern

The di�raction pattern obtained from the structure
factor is shown in Fig. 8a and compared with the pat-
tern obtained by numerical calculation shown in Fig. 8b.
The resulting patterns are consistent. From the compari-
son between di�raction patterns for GPT and PT with no
decoration one can conclude that the positions of di�rac-
tion peaks are the same but their intensities are slightly
changed: 0−2 % of the peak value for k = 0. The relative
intensity change is higher, mainly for the weaker peaks
it can be 20% or more. Two re�ections, (0,−3,−5,−3)
and (3, 2,−2,−3) were selected to plot of the relative in-
tensity change as a function of the shift (Fig. 9).
Deviations in intensities do not have any numerical

reasons, but they are related to the GPT itself. To prove
this the structure factor and relative intensity (normal-
ized to the peak at k = 0) for peak (3, 2,−2,−3) was
calculated analytically for PT
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F =
−1
ky⊥

(10τ2

π
− 5τ2

π
cosα+

10τ4

π
cos τα

+
5τ5

π
cos

α

τ

)
≈ 15.522, I[%] ≈ 81.393, (11)

where α = 2π(τ+2)
5τ4 and τ = 1+

√
5

2 are constants.
On the other hand, for GPT with a shift of 0.5 we ob-

tain

F =
1

ky⊥

[10τ3

π
cos

α

2
− 10τ4

π
cos

α

2τ
+

10τ4

π
cos

ατ2

2

−5τ2

π
− 10τ3

π
cosα− 10τ3

π
cos

5τα

2(τ + 2)

+
5τ5

π
cos(τα)

]
≈ 15.521, I[%] ≈ 81.380. (12)

Comparing these two formulae shows that while the two
numerical values are similar, the structure factor and the
intensities of the unshifted PT and the GPT obey di�er-
ent analytical formulae.

Fig. 8. (a) Di�raction pattern of GPT, shift = 0.5, cal-
culated from structure factor, (b) di�raction pattern of
GPT, shift = 0.5, numerical calculation.

Fig. 9. Relative intensity change as a function of shift.

5. Conclusions

The GPT was obtained by projecting the 5D hyper-
cubic lattice through a window consisting of �ve poly-
gons. The resulting structure is very similar to that of
the PT, but its matching rules and vertex atlases are dif-
ferent. The structure factor for GPT has been derived
and used for calculation of the di�raction pattern of a
non-decorated structure. The peaks of GPT are in iden-
tical positions as those of PT, but their intensities are
changed as a result of shift of the ASs. The relative
change of the weaker peaks is much larger than that of
the strong ones. The next step would be to derive the
structure factor for arbitrarily decorated GPT using the
AUC approach and to try to use the shift of the ASs as
one of the parameters in the structure re�nement pro-
cedure of dQCs. This would allow to optimize also the
long-range order and has not been tried before.
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