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In the present work the generalized Langevin equation is solved for the motion of a charged Brownian oscillator
in a magnetic �eld, when the thermal random force is exponentially correlated in the time. This model is consistent
with the assumption that the medium has weakly viscoelastic properties. The velocity autocorrelation function,
time-dependent di�usion coe�cient and mean square displacement of the particle have been calculated. Our
solutions generalize the previous results from the literature and are obtained in a way applicable to other problems
of the Brownian motion with memory.
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1. Introduction

Stochastic motion of charged particles in magnetic
�elds was �rst studied half a century ago in connection
with the di�usion of electrons and ions in plasma. In
the classical works by Taylor and Kur³uno§lu the long-
time limits of the mean square displacement (MSD) of
the particles have been found [1, 2]. Later Furuse on the
basis of the standard Langevin theory with the white-
noise force driving the particles, generalized their results
for arbitrary times [3]. The currently observed revival of
these problems is mainly related to memory e�ects in the
particle di�usion [4, 5]. Such e�ects appear when more
realistic coloured random forces act on the particles from
their surroundings. In the present work an exact analyt-
ical solution of the generalized Langevin equation (LE)
has been found for the motion of the particle trapped
in a harmonic potential well and exposed to a constant
magnetic �eld in the case when the thermal force is ex-
ponentially correlated in the time. This model is con-
sistent with the assumption that the solvent has weakly
viscoelastic properties, which corresponds to the theory,
originally proposed by Maxwell and later substantiated
coming from �rst principles [5, 6]. The calculated time
correlation functions describing the particle motion are
more general than the previous results from the litera-
ture and are obtained in a way applicable to many other
problems of the Brownian motion with memory.

2. Formulation of the problem

If the random force driving the Brownian particle (BP)
is not the delta-correlated white noise but a coloured one,
the friction during the particle motion cannot be arbi-
trary (in particular, it cannot be the Stokes one as in
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the traditional theories) but must obey the �uctuation-
dissipation theorem. Then the equation of motion for
the BP has a non-Markovian form of a generalized LE
[5] that, for a particle of massM in a harmonic potential
with sti�ness k, is

M υ̇(t) +M

t∫
0

Γ(t− t′)υ(t′)dt′ +Mω2r(t)

= Qυ ×B + f(t), (1)

where Q is the charge of the particle of mass M , B is
the constant induction of magnetic �eld along the axis
z, and the force f has zero mean and its time corre-
lation function at t > 0 is 〈fi(t)fj(0)〉 = kBTδijΓ(t).
The memory in the system is described by the kernel
Γ(t) = ωMωmexp(−ωmt). Here, ω = (k/M)1/2 is the
oscillator frequency and υ(t) = ṙ(t) is the velocity of
the BP. Let the force f(t) arises from the standard LE
mu̇(t) + γu(t) = η(t) with the white-noise force η(t)
and the Stokes friction force proportional to the veloc-
ity u(t) of the surrounding particles. The characteristic
relaxation times of the particles of mass m and the BP
of mass M , respectively, are τm = 1/ωm = m/γ and
τM = 1/ωM = M/γ.

3. Solving the generalized Langevin equation

The projection of Eq. 1 onto the axis z does not con-
tain the magnetic force so that along the �eld we have
just a Brownian oscillator in a Maxwell �uid. The full
solution of this problem (including the case of a moving
potential well) can be found in [7]. The motion across the
�eld can be considered as follows. We multiply both the
projections of Eq. 1 on the axes x and y by υx(0) and sta-
tistically average. This way we obtain the equations for
the velocity correlation functions ϕx(t) = 〈υx(t)υx(0)〉
and υxy(t) = 〈υy(t)υx(0)〉. The corresponding equa-
tions for the Laplace transform (LT) of these quantities,

φ̃x(s) = Λ {ϕx(t)} and υ̃xy(s) = Λ {υxy(t)} , are
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sϕ̃x(s) + ϕ̃x(s)Γ̃(s) + ω2s−1ϕ̃x(s)− ωcυ̃xy(s)

= kBT/M, (2)

sυ̃xy(s) + υ̃xy(s)Γ̃(s) + ω2s−1υ̃xy(s) + ωcϕ̃x(s)

= 0, (3)

where Γ̃(s) = ωMωm(ωm + s)−1 and ωc = QB/M is
the cyclotron frequency. We have used the equipartition
theorem, ϕi(0) = kBT/M , and the fact that at t = 0 dif-
ferent projections of the velocity are uncorrelated. Anal-
ogous equations are obtained for φ̃y(s) and υ̃yx(s). These
sets of equations have the following solutions for i = x, y:

φ̃i(s) =
kBT

2M

1

ψ(s) + iωc
+ c.c. (4)

Here, �c.c.� stands for �complex conjugate� and ψ(s) =

s+ Γ̃(s) +ω2s−1. Using the solutions of Eq. 4, the time-
dependent di�usion coe�cients Di(t) of the BP and its
mean square displacements (MSD) ξi(t) can be calcu-

lated according to the formulae [7] Di(t) =
∫ t

0
φi(t

′)dt′

and ξi(t) = 2
∫ t

0
Di(t

′)dt′. Expanding the denominator
in Eq. 4 in simple fractions, we get

D̃i (s) =
kBT

2M
(s+ ωm)

3∑
i=1

Ai

s− si
+ c.c., (5)

with si being the roots of the cubic equation s
3+s2(iωc+

ωm) + s(iωcωm + ωMωm + ω2) + ω2ωm = 0. For the
coe�cients Ai we have 1/A1 = (s1 − s2)(s1 − s3), and
A2,3 are obtained by the cyclic change of the indexes
1 → 2 → 3 → 1. In Eq. 5, we have used the relation∑3

i=1Ai = 0. It also holds
∑3

i=1Aisi = 0. One thus sees
that the inverse LT of Eq. 5,

Di (t) =
kBT

2M

3∑
i=1

Ai (ωm + si) exp (sit) + c.c., (6)

describes at t→ 0 the physically expected ballistic mo-
tion, Di(t) ≈ kBTt/M . As t → ∞, Di(t) at nonzero ω
disappears.

4. Limiting cases

The analysis of the general result (6) for the dif-
fusion function Dxy(t) = Dx(t) + Dy(t) or the MSD
across the �eld, ξxy(t) = ξx(t) + ξy(t), can be done
analytically or numerically. Here we show the limit-
ing cases covered by the obtained solution. First, at
the limit of zero correlation time of the random force
(ωm → ∞, which corresponds to white noise) the so-
lution is described by only two roots s1,2, expressed as

2s1,2 = −ωM − iωc± [(ωM + iωc)
2−4ω2]1/2. In the plane

perpendicular to the �eld we then have

ξxy (t) =
kBT

Ms1s2

(
1 +

s1 exp (s2t)− s2 exp (s1t)

s2 − s1

)
+c.c. (7)

with the ballistic behaviour ξxy(t) ≈ 2kBTt
2/M at

t→ 0, independent on the external forces and the prop-

erties of the random force. Using s1s2 = ω2, we obtain
ξxy(t) ≈ 4kBT/Mω2 as the main approximation for long
times. These results are the same as for the situation
with zero magnetic �eld. The full solution in the absence
of the �eld, but when the oscillator is driven by the cor-
related noise, has been found in [7]. For B 6= 0, but
neglecting the harmonic force, the MSD across the �eld
(normalized to (4kBT/γωM )[1+(ωc/ωM )2]−1), is at long
times expressed in a dimensionless form [8]

ξ̄xy(t) ≈ ωM t+

(
1− ωM

ωm

)
(ωc/ωM )

2 − 1

(ωc/ωM )
2

+ 1
+ . . . (8)

Next to the `Einstein' term proportional to t and the
constant term there are exponentially decreasing contri-
butions. At t → 0 we again have ξxy(t) ≈ 2kBTt

2/M .
These results correct the previous solution [4]. The limits
ω → 0 and ωm →∞ fully correspond to the classical re-
sult for particles driven by the white noise in an external
magnetic �eld [3, 8].

5. Conclusions

In a number of recent papers the classical works on
the motion of particles under the in�uence of external
forces in a �uctuating environment have been developed.
The aim of the present paper was to consider the Brown-
ian motion of a charged oscillator in a constant magnetic
�eld. The inertial and memory e�ects on the particle
motion across the �eld have been analysed within the
generalized Langevin theory. The memory in the sys-
tem corresponds to that of Maxwell's viscoelastic �uids.
Exact solutions for the time correlations functions de-
scribing the oscillator �uctuations have been obtained.
The general solution is new and its limit in the absence
of the potential well corrects the previous attempts from
the literature. Our �ndings could be tested in experi-
ments on trapped particles, similar to those carried out
in [6], where memory e�ects in the Brownian motion were
directly probed.
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