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In the present work the generalized Langevin equation is solved for the motion of a charged Brownian oscillator
in a magnetic field, when the thermal random force is exponentially correlated in the time. This model is consistent
with the assumption that the medium has weakly viscoelastic properties. The velocity autocorrelation function,
time-dependent diffusion coefficient and mean square displacement of the particle have been calculated. Our
solutions generalize the previous results from the literature and are obtained in a way applicable to other problems

of the Brownian motion with memory.
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1. Introduction

Stochastic motion of charged particles in magnetic
fields was first studied half a century ago in connection
with the diffusion of electrons and ions in plasma. In
the classical works by Taylor and Kurgunoglu the long-
time limits of the mean square displacement (MSD) of
the particles have been found [1, 2]. Later Furuse on the
basis of the standard Langevin theory with the white-
noise force driving the particles, generalized their results
for arbitrary times [3]. The currently observed revival of
these problems is mainly related to memory effects in the
particle diffusion [4, 5]. Such effects appear when more
realistic coloured random forces act on the particles from
their surroundings. In the present work an exact analyt-
ical solution of the generalized Langevin equation (LE)
has been found for the motion of the particle trapped
in a harmonic potential well and exposed to a constant
magnetic field in the case when the thermal force is ex-
ponentially correlated in the time. This model is con-
sistent with the assumption that the solvent has weakly
viscoelastic properties, which corresponds to the theory,
originally proposed by Maxwell and later substantiated
coming from first principles [5, 6]. The calculated time
correlation functions describing the particle motion are
more general than the previous results from the litera-
ture and are obtained in a way applicable to many other
problems of the Brownian motion with memory.

2. Formulation of the problem

If the random force driving the Brownian particle (BP)
is not the delta-correlated white noise but a coloured one,
the friction during the particle motion cannot be arbi-
trary (in particular, it cannot be the Stokes one as in
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the traditional theories) but must obey the fluctuation-
dissipation theorem. Then the equation of motion for
the BP has a non-Markovian form of a generalized LE
[5] that, for a particle of mass M in a harmonic potential
with stiffness k, is

Mo(t) + M/F(t — Yo' dt' + Mw?r(t)
0

where @ is the charge of the particle of mass M, B is
the constant induction of magnetic field along the axis
z, and the force f has zero mean and its time corre-
lation function at ¢t > 0 is (f;(¢)f;(0)) = kgTd;;T(t).
The memory in the system is described by the kernel
I'(t) = wywmerp(—wpt). Here, w = (k/M)'/? is the
oscillator frequency and v(t) = 7(t) is the velocity of
the BP. Let the force f(t) arises from the standard LE
mu(t) + yu(t) = m(t) with the white-noise force 7(t)
and the Stokes friction force proportional to the veloc-
ity u(t) of the surrounding particles. The characteristic
relaxation times of the particles of mass m and the BP
of mass M, respectively, are 7,, = 1/w,, = m/v and
™™ = l/wM = M/’7

3. Solving the generalized Langevin equation

The projection of Eq. 1 onto the axis z does not con-
tain the magnetic force so that along the field we have
just a Brownian oscillator in a Maxwell fluid. The full
solution of this problem (including the case of a moving
potential well) can be found in [7]. The motion across the
field can be considered as follows. We multiply both the
projections of Eq. 1 on the axes  and y by v,(0) and sta-
tistically average. This way we obtain the equations for
the velocity correlation functions ¢, (t) = (v (t)v4(0))
and vgy(t) = (vy(t)vz(0)). The corresponding equa-
tions for the Laplace transform (LT) of these quantities,

q@x(s) = A{p.(t)} and Uyy(s) = A{vyy(t)} , are
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5@z(s) + ‘Z’I(S)f‘(s) + W23_1¢z(3) — WeDzy(S)
=kgT/M, (2)

$Uay(5) + Vay (5)0(5) + ws™ 0y () + weBa(s)

=0, (3)
where T'(s) = wywm(wm + 5)~! and w. = QB/M is
the cyclotron frequency. We have used the equipartition
theorem, ¢;(0) = kT /M, and the fact that at ¢ = 0 dif-
ferent projections of the velocity are uncorrelated. Anal-

ogous equations are obtained for ¢, (s) and 0, (s). These
sets of equations have the following solutions for i = x, y:

~ kT 1
i(8) = ———— .C. 4
9i(s) 2M zp(s)—&—zwc—'_cc @
Here, “c.c.” stands for “complex conjugate” and v¢(s) =

s+ f‘(s) +w?s~ L. Using the solutions of Eq. 4, the time-
dependent diffusion coefficients D;(t) of the BP and its
mean square displacements (MSD) &;(¢) can be calcu-
lated according to the formulae [7] D;(t) = fot @i (t)dt!
and &(t) = 2f0t D;(t")dt’. Expanding the denominator
in Eq. 4 in simple fractions, we get

- kpT > A

D; (s) = 2?\4 (s —i—wm); S oo (5)
with s; being the roots of the cubic equation s+ 52 (iw,. +
Wm) + s(iwewnm + wyrwm + w?) + ww,, = 0. For the
coefficients A; we have 1/4; = (s1 — s2)(s1 — s3), and
Ay 3 are obtained by the cyclic change of the indexes
1—2— 3 — 1. In Eq. 5, we have used the relation
S A =0. It also holds 37, A;s; = 0. One thus sees
that the inverse LT of Eq. 5,

3
D;(t) = kT > Ai (wm + si) exp (sit) + e, (6)
=1

2M <

describes at ¢ — 0 the physically expected ballistic mo-
tion, D;(t) ~ kgTt/M. As t — oo, D;(t) at nonzero w
disappears.

4. Limiting cases

The analysis of the general result (6) for the dif-
fusion function D,y (t) = Dg(t) + Dy(t) or the MSD
across the field, &;,(t) = & (t) + &, (t), can be done
analytically or numerically. Here we show the limit-
ing cases covered by the obtained solution. First, at
the limit of zero correlation time of the random force
(W — 00, which corresponds to white noise) the so-
lution is described by only two roots s; 2, expressed as
2810 = —wpr —iwe % [(war +iwe)? —4w?)Y/2. In the plane
perpendicular to the field we then have

£y (1) = ]\jBT (1 N s1 exp (sat) — sg exp (slt))

5152 §2 — 81
+c.c. (7)

with the ballistic behaviour &,,(t) ~ 2kpTt*/M at
t — 0, independent on the external forces and the prop-

erties of the random force. Using s1s9 = w?, we obtain
uy(t) = 4kpT/Mw? as the main approximation for long
times. These results are the same as for the situation
with zero magnetic field. The full solution in the absence
of the field, but when the oscillator is driven by the cor-
related noise, has been found in [7]. For B # 0, but
neglecting the harmonic force, the MSD across the field
(normalized to (4kpT /ywar)[1+ (we/war)?] 1), is at long
times expressed in a dimensionless form [8]

2
“’M) w Lo (8)
Wm (wc/wM) +1

Next to the ‘Einstein’ term proportional to ¢ and the
constant term there are exponentially decreasing contri-
butions. At ¢t — 0 we again have &, (t) ~ 2kpTt*/M.
These results correct the previous solution [4]. The limits
w — 0 and w,, — oo fully correspond to the classical re-
sult for particles driven by the white noise in an external
magnetic field [3, §].

Eoy(t) = wnt + (1 —

5. Conclusions

In a number of recent papers the classical works on
the motion of particles under the influence of external
forces in a fluctuating environment have been developed.
The aim of the present paper was to consider the Brown-
ian motion of a charged oscillator in a constant magnetic
field. The inertial and memory effects on the particle
motion across the field have been analysed within the
generalized Langevin theory. The memory in the sys-
tem corresponds to that of Maxwell’s viscoelastic fluids.
Exact solutions for the time correlations functions de-
scribing the oscillator fluctuations have been obtained.
The general solution is new and its limit in the absence
of the potential well corrects the previous attempts from
the literature. Our findings could be tested in experi-
ments on trapped particles, similar to those carried out
in [6], where memory effects in the Brownian motion were
directly probed.
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