Magnetic Properties of MeB\textsubscript{50} (Me = 3\textit{d} Atom) Compounds

A.S. Panfilova, G.E. Grechneva,∗, V.B. Filippovb, A.B. Lyashchenkob, G.V. Levchenkob

aB. Verkin Institute for Low Temperature Physics and Engineering NASU, 61103 Kharkov, Ukraine

bI. Franksteich Institute for Problems of Materials Sciences NASU, 03680 Kiev, Ukraine

Temperature dependence of the static magnetic susceptibility for higher borides MeB\textsubscript{50}, where Me = V, Cr, Mn, Fe, Co and Ni, was measured by Faraday method in the temperature range of 78–300 K. The value of effective magnetic moment of 3\textit{d}-ions, resulted from the experiment, is compared with corresponding data of the \textit{ab initio} calculations of the electronic structure and magnetic properties of these compounds based on the density functional theory.

DOI: 10.12693/APhysPolA.126.400

PACS: 75.20.Hr, 75.30.Hx, 81.05.Je

1. Introduction

As is known, the interstitial doping of the \(\beta\)-boron with \textit{d}-elements changes significantly its electronic properties (e.g. transport, thermoelectric and magnetic ones) depending on the kind and concentration of dopants and the type of occupied sites \[1–6\]. Such behavior originates presumably from the correlation among dopant atoms, accommodated in the well-defined interstitial sites, which generates a system of electronic states in the band gap of boron. One of the effective tools for identification of these impurity states in the boron-rich \(\beta\)-metal borides is the study and appropriate analysis of their magnetic properties.

Available literature data on the magnetism of higher 3\textit{d}-metal borides (B:V \[4\], B:Mn \[6\], B:Fe \[5\], B:Ni \[4\]) refer to compounds with different B:3\textit{d}-metal ratios that makes it difficult to reveal the evolution along 3\textit{d}-series of the physical properties for borides with a fixed fraction of 3\textit{d}-element. Here we report the results of the experimental and theoretical study of magnetic properties of MeB\textsubscript{50} borides, where Me = V, Cr, Mn, Fe, Co and Ni.

2. Experimental and theoretical details and results

To prepare the samples, a mixture of crushed metal and amorphous boron in a ratio corresponding to MeB\textsubscript{50} composition has been compacted in "pills", which then were arc melted on a water-cooled copper hearth under an argon atmosphere. The resulting ingots were annealed in a vacuum furnace at about 1650 °C for 20 hours. The obtained samples are assumed to possess the \(\beta\)-rhombohedral boron crystal structure interstitially doped with 3\textit{d} atoms.

Temperature dependence of the magnetic susceptibility \(\chi(T)\) was measured by a Faraday method at \(T = 78–300\) K in a magnetic field of 5 kOe. For all samples, the \(\chi(T)\) data obey a modified Curie-Weiss law, \(\chi(T) = \chi_0 + C/(T - \theta)\), where \(\chi_0\) is temperature independent contribution, \(C\) the Curie constant and \(\theta\) paramagnetic Curie temperature. The Curie-Weiss law parameters, which describe satisfactorily the experimental data (Fig. 1), are collected in Table.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Me & \(\chi_0\) & \(\theta\) & \(\mu_{\text{eff}}\) \\
\hline
V & -0.5 & -24 & 1.77 & 1.07 \\
Cr & 1.5 & -42 & 2.05 & 2.5 \\
Mn & 2.2 & -40 & 4.0 & 3.3 \\
Fe & 1.8 & -70 & 4.26 & 2.55 \\
Co & 0.5 & -20 & 2.27 & 0.9 \\
Ni & -0.4 & -14 & 1.86 & \sim 0.1 \\
\hline
\end{tabular}
\caption{Curie-Weiss parameters for MeB\textsubscript{50} compounds.}
\end{table}

Fig. 1. Temperature dependence of the inverse magnetic susceptibility of MeB\textsubscript{50} borides (Me = 3\textit{d}-metal).

∗corresponding author; e-mail: grechnev@ilt.kharkov.ua
The spin polarized calculations of electronic structure and magnetic moment for MeB$_{50}$ borides are carried out by means of FP-LMTO code RSPt [7] for the tetragonal B$_{50}$-based compounds [8]. The corresponding structure contains four icosahedra of B$_{12}$ whereas two atoms of boron and 3d-metal electron donor atom occupy vacant 2a positions in the unit cell, providing a stable electronic configuration. Though this structure can be considered as a model one, we should note that B$_{12}$ icosahedra are also essential structural elements of β-rhombohedral boron, which incorporates metal atoms in vacant structural positions [1]. According to FP-LMTO calculations for MeB$_{50}$ compounds in paramagnetic (PM) state, a peculiar evolution of their densities of electronic states $N(E)$ and positions of the Fermi level in the vicinity of the energy gap are substantially dependent on a type of inserted 3d-atom of various valency. As is seen in Fig. 2 for FeB$_{50}$ system, the p-d hybridization and exchange splitting provide the electronic structure and $N(E)$ which are obviously different from that of the elemental semi-conducting boron [8]. The calculations of the spin-polarized electronic structures for ferromagnetic (FM) phase of MeB$_{50}$ borides yield the corresponding magnetic moment values given in Table.

![Fig. 2. Density of states for PM FeB$_{50}$. A strong peak of about 0.6 eV in width just below the Fermi level (dashed line at $E = 0$) originates mainly from the 3d-states of Fe.](image)

3. Discussion

As is seen from Table, the experimental values of the effective magnetic moment μ_{eff} show a nonmonotonic behavior reaching its maximum at the middle of the 3d-series. The same behavior can be also seen for the calculated moment μ of MeB$_{50}$ compounds for their FM state. This fact clearly indicates the dominating spin nature of the 3d-metallic moment and a substantial quenching of its orbital component in the crystal electric field (CEF).

Another feature of MeB$_{50}$ compounds is the existence of a significant antiferromagnetic (AFM) interaction (see Table) despite a strong dilution of the 3d-moment. The largest magnitude of θ (~70 K) was observed for FeB$_{50}$ compound which agrees with data reported in [5] for B:Fe system at the corresponding composition. The nature of this AFM coupling, which is also observed in rare earth higher borides [9], is not yet understood.

The nonmonotonic behavior of the Curie-Weiss parameter χ_0 along 3d-series should be also noted. The parameter χ_0 is close to the diamagnetic susceptibility of pure boron ($\sim 0.6 \times 10^{-6}$ emu/g) for VB$_{50}$ and NiB$_{50}$, having a maximum paramagnetic value of about 2.2×10^{-6} emu/g for MnB$_{50}$ (see Table). Such unusual behavior of χ_0 is assumed to be an intrinsic feature of MeB$_{50}$ systems.

4. Conclusions

The present preliminary results of the experimental and theoretical studies of magnetic properties of MeB$_{50}$ borides (Me = 3d-metal) point clearly to the spin nature of the 3d-states magnetic moment and almost complete quenching of its orbital part. The most puzzling feature of these borides is the observed existence of AFM coupling. To clarify its origin and a possible role of the CEF effects, we have to carry on the low temperature studies of magnetic properties of MeB$_{50}$ compounds, which are now in progress.

References