Proceedings of the 15th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 17-21 2013

Magnetic Properties of MeB_{50} (Me = 3d Atom) Compounds

A.S. PANFILOV^a, G.E. GRECHNEV^{a,*}, V.B. FILIPOV^b, A.B. LYASHCHENKO^b, G.V. LEVCHENKO^b

^aB. Verkin Institute for Low Temperature Physics and Engineering NASU, 61103 Kharkov, Ukraine

^bI. Frantsevich Institute for Problems of Materials Sciences NASU, 03680 Kiev, Ukraine

Temperature dependence of the static magnetic susceptibility for higher borides MeB_{50} , where Me = V, Cr, Mn, Fe, Co and Ni, was measured by Faraday method in the temperature range of 78–300 K. The value of effective magnetic moment of 3*d*-ions, resulted from the experiment, is compared with corresponding data of the *ab initio* calculations of the electronic structure and magnetic properties of these compounds based on the density functional theory.

DOI: 10.12693/APhysPolA.126.400

PACS: 75.20.Hr, 75.30.Hx, 81.05.Je

1. Introduction

As is known, the interstitial doping of the β -boron with d-elements changes significantly its electronic properties (e.g. transport, thermoelectric and magnetic ones) depending on the kind and concentration of dopants and the type of occupied sites [1–6]. Such behavior originates presumably from the correlation among dopant atoms, accommodated in the well-defined interstitial sites, which generates a system of electronic states in the band gap of boron. One of the effective tools for identification of these impurity states in the boron-rich d-metal borides is the study and appropriate analysis of their magnetic properties.

Available literature data on the magnetism of higher 3d-metal borides (B:V [4], B:Mn [6], B:Fe [5], B:Ni [4]) refer to compounds with different B:3d-metal ratios that makes it difficult to reveal the evolution along 3d-series of the physical properties for borides with a fixed fraction of 3d-element. Here we report the results of the experimental and theoretical study of magnetic properties of MeB₅₀ borides, where Me = V, Cr, Mn, Fe, Co and Ni.

2. Experimental and theoretical details and results

To prepare the samples, a mixture of crushed metal and amorphous boron in a ratio corresponding to MeB₅₀ composition has been compacted in "pills", which then were arc melted on a water-cooled copper hearth under an argon atmosphere. The resulting ingots were annealed in a vacuum furnace at about 1650 °C for 20 hours. The obtained samples are assumed to possess the β rhombohedral boron crystal structure interstitially doped with 3d atoms.

Temperature dependence of the magnetic susceptibility $\chi(T)$ was measured by a Faraday method at T = 78 - 300 K in a magnetic field of 5 kOe. For all samples, the $\chi(T)$ data obey a modified Curie-Weiss law, $\chi(T) = \chi_0 + C/(T - \theta)$, where χ_0 is temperature independent contribution, C the Curie constant and θ paramagnetic Curie temperature. The Curie-Weiss law parameters, which describe satisfactorily the experimental data (Fig. 1), are collected in Table.

Fig. 1. Temperature dependence of the inverse magnetic susceptibility of MeB_{50} borides (Me = 3*d*-metal).

TABLE

The Curie-Weiss parameters for MeB₅₀ compounds, χ_0 (in units of 10^{-6} emu/g), $\theta(K)$ and the resulted from the Curie constant *C* value of the effective magnetic moment μ_{eff} , together with the calculated ground state moment μ (both in units of $\mu_{\text{B}}/3d$ atom).

Me	χ_0	θ	$\mu_{ ext{eff}}$	μ
V	-0.5	-24	1.77	1.07
\mathbf{Cr}	1.5	-42	2.05	2.5
Mn	2.2	-40	4.0	3.3
${\rm Fe}$	1.8	-70	4.26	2.55
Co	0.5	-20	2.27	0.9
Ni	-0.4	-14	1.86	~ 0.1

^{*}corresponding author; e-mail: grechnev@ilt.kharkov.ua

The spin polarized calculations of electronic structure and magnetic moment for MeB_{50} borides are carried out by means of FP-LMTO code RSPt [7] for the tetragonal B₅₀-based compounds [8]. The corresponding structure contains four icosahedra of B_{12} whereas two atoms of boron and 3d-metal electron donor atom occupy vacant 2a positions in the unit cell, providing a stable electronic configuration. Though this structure can be considered as a model one, we should note that B_{12} icosahedra are also essential structural elements of β rhombohedral boron, which incorporates metal atoms in vacant structural positions [1]. According to FP-LMTO calculations for MeB₅₀ compounds in paramagnetic (PM) state, a peculiar evolution of their densities of electronic states N(E) and positions of the Fermi level in the vicinity of the energy gap are substantially dependent on a type of inserted 3d-atom of various valency. As is seen in Fig. 2 for FeB_{50} system, the *p*-*d* hybridization and exchange splitting provide the electronic structure and N(E) which are obviously different from that of the elemental semi-conducting boron [8]. The calculations of the spin-polarized electronic structures for ferromagnetic (FM) phase of MeB₅₀ borides yield the corresponding magnetic moment values given in Table.

Fig. 2. Density of states for PM FeB₅₀. A strong peak of about 0.6 eV in width just below the Fermi level (dashed line at E = 0) originates mainly from the 3*d*-states of Fe.

3. Discussion

As is seen from Table, the experimental values of the effective magnetic moment μ_{eff} show a nonmonotonic behavior reaching its maximum at the middle of the 3*d*-series. The same behavior can be also seen for the calcu-

lated moment μ of MeB₅₀ compounds for their FM state. This fact clearly indicates the dominating spin nature of the 3*d*-magnetic moment and a substantial quenching of its orbital component in the crystal electric field (CEF).

Another feature of MeB₅₀ compounds is the existence of a significant antiferromagnetic (AFM) interaction (see Table) despite a strong dilution of the 3*d*-moments. The largest magnitude of θ (-70 K) was observed for FeB₅₀ compound which agrees with data reported in [5] for B:Fe system at the corresponding composition. The nature of this AFM coupling, which is also observed in rare earth higher borides [9], is not yet understood.

The nonmonotonic behavior of the Curie-Weiss parameter χ_0 along 3*d*-series should be also noted. The parameter χ_0 is close to the diamagnetic susceptibility of pure boron (~ -0.6×10^{-6} emu/g) for VB₅₀ and NiB₅₀, having a maximum paramagnetic value of about 2.2×10^{-6} emu/g for MnB₅₀ (see Table). Such unusual behavior of χ_0 is assumed to be an intrinsic feature of MeB₅₀ systems.

4. Conclusions

The present preliminary results of the experimental and theoretical studies of magnetic properties of MeB_{50} borides (Me = 3*d*-metal) point clearly to the spin nature of the 3*d*-states magnetic moment and almost complete quenching of its orbital part. The most puzzling feature of these borides is the observed existence of AFM coupling. To clarify its origin and a possible role of the CEF effects, we have to carry on the low temperature studies of magnetic properties of MeB₅₀ compounds, which are now in progress.

References

- H. Werheit, R. Schmechel, V. Kueffell, T. Lundström, J. All. Comp. 262-263, 372 (1997).
- [2] H. Werheit, Solid State Sci. 13, 1786 (2011).
- U. Kuhlmann, H. Werheit, J. Pelloth, W. Keune, T. Lundström, *Phys. Stat. Sol. B* 187, 43 (1995).
- [4] H. Matsuda, N. Tanaka, T. Nakayama, K. Kimura, Y. Murakami, H. Suematsu, M. Kobayashi, I. Higashi, J. Phys. Chem. Solids 57, 1167 (1996).
- [5] G.P. Tsiskarisvili, T. Lundström, L. Lundgren, G.V. Tsagareishvili, D.N. Tsikaridze, F.N. Tavadze, J. Less-Common Metals 142, 91 (1988).
- [6] G.P. Tsiskarishvili, T. Lundström, L. Lundgren, G.V. Tsagareishvili, D.N. Tsikaridze, F.N. Tavadze, J. Less-Common Metals 147, 41 (1989).
- [7] J.M. Wills, M. Alouani, P. Andersson, A. Delin, O. Eriksson, O. Grechnyev, *Full-Potential Electronic Structure Method*, Springer Verlag, Berlin (2010).
- [8] W. Hayami, S. Otani, J. Solid State Chem. 183, 1521 (2010).
- [9] T. Mori, J. Phys.: Conf. Ser. 176, 012036 (2009).