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Defect Mode in LaB6
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The speci�c heat of high quality LaNB6 (N = 10, 11, natural) single crystals is investigated in a wide range of
temperatures 2 � 300 K. The obtained data allow to estimate correctly (i) the electronic γ · T term of speci�c heat
(γ ≈ 2.4 mJ/(mol·K2)), (ii) the contribution from quasilocal vibrating mode of La3+ ions (ΘE ≈ 150 � 152 K),
(iii) the Debye-type term from rigid boron cages (ΘD ≈ 1160± 40 K). Our data also suggest an additional defect-
mode component (iv) which may be attributed to a contribution of 1.5% boron vacancies in LaB6. The obtained
results may be interpreted in terms of formation of two level systems, which appear when La3+ ions are displaced
from their centrosymmetric positions in the cavities of rigid boron cages, apart from randomly distributed boron
vacancies in the LaB6 matrix.
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1. Introduction

Lanthanum hexaboride (LaB6) has been the subject of
many studies over the years (see the review in [1]). Unlike
the other RB6 compounds, which properties are in�u-
enced by the complicated interplay of various degrees of
freedom, nonmagnetic LaB6 is the ideal object of thermo-
dynamical investigations. As all hexaborides, LaB6 has a
simple bcc structure of CsCl type (s.g. Pm3m−O1

h) with
rare earth (RE) ions in the body centered positions and
boron octahedra in the cube corners. The unique prop-
erty of such structure is that it may be divided into two
classes. The boron atoms are coupled by strong cova-
lent bounds forming the Debye sublattice. On the other
hand, due to their loosely bound state, the La3+ ions are
treated as independent harmonic oscillators (Einstein os-
cillators). Therefore, LaB6 is a model object for speci�c
heat studies. Although the procedure of speci�c heat
analysis was published for LaB6 in many works [2 � 5]
the most of them do not discuss the contribution of the
defect mode predicted previously for RB6 by Kasuya [6].
Thus, it is of interest to compare our conclusions with
results of [2 � 5].

2. Experimental details

The speci�c heat of LaB6 single crystals was studied
at constant pressure over a wide temperature range 2 �
300 K in PPMS-9 (Quantum Design). In order to detect
the defect-mode contribution LaNB6 single crystals with
various boron isotope content (N = 10, 11, nat.) were
additionally studied. The quality control of the samples
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was performed by electron microprobe and X-ray di�rac-
tion (XRD) analysis.

3. Results and discussion

The temperature dependences of speci�c heat C(T ) of
LaNB6 are presented in Fig. 1. The obtained data agrees
rather well with that of [4, 5] beyond the temperature
interval of 4.2 � 20 K, where the defect-mode dominates.
Other contributions to speci�c heat were calculated in
the framework of standard procedure previously applied
in [2, 5]. To estimate the electronic term Cel = γ · T
we took the value γ ≈ 2.4 mJ/(mol·K2) which is close
to the results of electronic structure calculations [7] and
previous speci�c heat analysis of LaB6 [2, 5]. The phonon

Fig. 1. Temperature dependences of speci�c heat of
La11B6 with data taken from [4] (symbols ) and [5]
(symbols 4).
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Fig. 2. (a) Separation of the phonon contribution (C−
γ·T )/T 3 into Debye CD/T

3 and Einstein CE/T
3 compo-

nents. (b) The analysis of residual contribution Cres/T
3

by Schottky relation with two types of TLS (see the
text).

contribution Cph/T
3 = (C−γ·T )/T 3 is studied in Fig. 2a.

The Einstein term CE of the R3+ quasi-local vibrational
mode and Debye term CD of the rigid boron cage were
separated with temperatures ΘE ≈ 150 � 152.5 K and
ΘD ≈ 1160 K, which agree well with the results of speci�c
heat studies [2�5] and lattice dynamics investigation (see
the review [1]).
Let us consider the defect mode contribution to the

speci�c heat of LaB6. Following the subtraction of the
sum CD/T

3 and CE/T
3 from Cph/T

3 one can calculate
the residual contribution Cres/T

3 presented in Fig. 2b.
In our opinion, Cres/T

3 describes the defect mode term
induced by the presence of boron vacancies in the RB6

matrix. Indeed as it was predicted in [6] and then proved
by the results of point contact spectroscopy [8], XRD and
neutron di�raction investigations (see for example [9]),
there are about 1-9% of vacancies in the boron sublat-
tice in RB6. The presence of boron vacancies in com-
bination with loosely bonded states of RE ions leads to
a displacement of some of R3+ ions from their central
positions inside the B24 cells in RB6. Therefore in ad-
dition to the main centrosymmetric site there are also
several nonequivalent o�-centered positions of R3+ ions.
In such situation the e�ects of disorder in RE ion's posi-
tion are responsible for two-level systems (TLS) forma-
tion, or equivalently, the appearance of double-well po-
tential (DWP) typical for glasses [10] (see also the inset in
Fig. 1). The existence of DWP with barrier height of ∆Ei

leads to tunnelling of electrons between the TLS states.
Thus to calculate the TLS characteristics we described
the residual contribution Cres/T

3 by the Schottky rela-
tion

CTLSi =

g1Ni

g0

(
∆Ei

T

)2
exp (−∆Ei/T )

(1 + g1/g0 exp (−∆Ei/T ))
2 , (1)

with two types of TLS consisting of singlet (g0) and
triplet (g1) states (see Fig. 2b). It was found that both
the concentration of TLS2 N2 ≈ 0.06 and the barrier
height ∆E2 ≈ 92 K do not depend on the boron iso-
tope content. Therefore, we propose that TLS2 is re-
lated to boron vacancies contribution. Taking into ac-
count the details of RB6's local structure, where one
boron vacancy belongs to four neighboring cells, the
real vacancy concentration is determined by the rela-
tion nvac = N2/4 = 1.5%. Note that the defect mode
contribution of LaB6 may also be estimated from data
presented in [4, 5]. Moreover, the existence of TLS was
experimentally detected from the recent Raman spectra
investigations of LuB12 [11], which is a nonmagnetic ana-
log of LaB6. The detailed analysis of speci�c heat of LaB6

will be presented elsewhere.

4. Conclusions

The analysis of speci�c heat of LaB6 is presented. The
obtained data allows to deduce a defect-mode contribu-
tion which originates from 1.5% of boron vacancies in
LaB6.
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