Proceedings of the 15th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 17-21 2013

Hall Effect in GdB_6

M. ANISIMOV^{a,*}, A. BOGACH^a, V. GLUSHKOV^{a,b}, S. DEMISHEV^{a,b}, N. SAMARIN^a, N. SHITSEVALOVA^c, A. LEVCHENKO^c, V. FILIPPOV^c, A. KUZNETSOV^d, K. FLACHBART^e, N. SLUCHANKO^a

^aA. M. Prokhorov General Physics Institute of RAS, Vavilov str. 38, 119991 Moscow, Russia

^bMoscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudnyi, Russia

^cI. Frantsevich Institute for Problems of Materials Science NAS, Krzhyzhanovsky str. 3, 03680 Kiev, Ukraine

^dMoscow Engineering Physics Institute, Kashirskoe sh. 31, 115409 Moscow, Russia

^eInstitute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia

The Hall effect of GdB₆ has been studied on high quality single crystals in the temperature range 2–150 K and in magnetic field of 1 T. The obtained data allow to detect anomalies in the antiferromagnetic (AF) phase including (i) a drastic enhancement of negative Hall coefficient below $T_{N1} \approx 15.5$ K and (ii) the appearance of an anomalous Hall effect at $T_{N2} \approx 4.7$ K. Possible scenarios of the AF ground state formation are discussed.

DOI: 10.12693/APhysPolA.126.348 PACS: 72.15 Gd

1. Introduction

Gadolinium hexaboride (GdB_6) is thought to be a typical, spin only, Heisenberg magnet since the Gd³⁺ ion does not have the orbital degrees of freedom (L = 0, S = 7/2). However the magnetic structure of GdB_6 , which is characterized by two successive first-order AFM transitions (AF(I) ordering below $T_{N1} \sim 15$ K, and AF(II) phase at temperatures $T < T_{N2} \sim 5$ –10 K), is still a subject of discussion [1 - 8]. Recent studies of neutron diffraction and X-ray diffraction have shown that this compound exhibits a complex commensurate magnetic structure with a wave vector $\mathbf{k}_m = [1/4, 1/4, 1/2]$ at $T < T_{N1} [3-6]$. Additionally, lattice distortions with $\boldsymbol{q}_1 = [1/2, 0, 0]$ and $q_2 = [1/2, 1/2, 0]$ were observed in [3, 5] and allowed Amara et al. [7] to suggest the displacement waves scenario based on the coherent displacement of Gd^{3+} ions inside the boron cages below T_{N1} . At the same time the authors of [7] pointed at $T < T_{N2}$ to the existence of an additional satellite [1/4, 1/4, 1/2] identical to the magnetic wave vector \boldsymbol{k}_m , and they proposed a complex displacement scheme in the low AF(II) phase. In this respect the investigation of Hall effect is important to provide necessary information to describe the magnetic ground state of GdB_6 and its evolution.

2. Experimental details

GdB₆ high quality single crystal ($T_{N1} \approx 15.5$ K, $T_{N2} \approx 4.7$ K) was grown by the crucible-free inductive zone melting in argon gas atmosphere. The control of the sample quality was performed by electron microprobe and X-ray diffraction analysis. The angular dependences of Hall resistivity $\rho_H(\varphi)$ have been measured in the temperature range 2–150 K in magnetic field 1 T by stepwise sample rotation technique in fixed magnetic field, applied perpendicular to the rotation axis. The dc-current was applied along < 110 > axis, which was also the axis of sample rotation (see the inset in Fig. 1). The description of the experimental setup was presented previously in [9–10].

Fig. 1. The angular dependences of Hall resistivity of GdB_6 , recorded in magnetic field $\mu_0 H = 1$ T at various temperatures in the range 2–150 K, corresponding to (a) AF(II), (b) AF(I) and PM phases. The solid lines display the approximation by the cosine-law (1). The inset in the panel (b) illustrates the scheme of the Hall effect measurements, $\mathbf{n} || < 001 >$.

3. Experimental results and discussion

Figure 1 illustrates the angular dependences of Hall resistivity measured in low magnetic field $\mu_0 H = 1$ T for (a) AF(II), (b) AF(I) and PM phases of GdB₆. In the temperature interval 6 – 150 K, corresponding to PM and AF(I) phases the experimental data presented in Fig. 1b have been analyzed by the simple relation

$$\rho_H(\varphi) = \rho_{H0} + \rho_{H1} \cdot \cos(\varphi - \Delta\varphi), \qquad (1)$$

^{*}corresponding author; e-mail: anisimov.m.a@gmail.com

where ρ_{H0} is the constant bias term and ρ_{H1} is the main component of the Hall signal. A similar type of $\rho_H(\varphi)$ dependence was detected experimentally in PM phases of many AF metallic systems, including heavy fermionic CeAl₂, light hexaborides CeB₆ [9], PrB₆, NdB₆ [10] and dodecaborides RB₁₂ (R-Lu, Ho, Er, Tm). Such behaviour of Hall resistivity can be attributed to the variation of the \boldsymbol{H} vector's normal component in accordance with the harmonic law, when the sample is rotating in magnetic field.

The curves of $\rho(\varphi)$ measured in AF(I) state of GdB₆ show the absence of any appreciable contribution of a second harmonic ~ $\rho_{H2} \cdot \cos 2\varphi$ to the Hall signal (see Fig. 1b). This result is opposite to the case of RB₆ (R-Ce, Pr, Nd), where a significant component of second harmonic was detected in AF state (phase II for CeB₆) [9–10].

The most crucial changes in the form of angular dependences of Hall resistivity are observed upon the transition to the AF(II) phase at $T < T_{N2}$. In this state the $\rho_H(\varphi)$ curves demonstrate a meander-type behaviour with extended $\rho_H(\varphi) = const$ (plateau) regions, which are followed by periodical switching of the Hall resistivity in the narrow vicinity of < 111 > directions (with a width smaller than 5°, see Fig. 1a). Moreover, hysteresis is also detected on $\rho_H(\varphi)$ curves at $T < T_{N2}$, measured for the sample rotated in opposite directions. Note that similar meander-type $\rho_H(\varphi)$ dependences were previously registered both in the AF state of CeB_6 [9] and in the low temperature micromagnetic phase of FeSi (see the discussion in [9]). The appearance of these singularities of the Hall resistance in combination with the drastic discrepancy of the $\rho_H(\varphi)$ data near 180° for different direction of rotation, indicate an emergence of anomalous component in the Hall resistance due to a appreciable magnetic contribution below T_{N2} .

The analysis of angular dependences of the Hall resistance based on Eq. 1 at 6 - 150 K allows to determine the shape of the $R_H(T) = \rho_{H1}(T)/H$ curve (see Fig. 2). In the temperature range 2 - 150 K the Hall coefficient is negative and R_H is virtually independent on temperature in the PM state, having a value $R_H \approx -4 \times 10^{-4} \text{ cm}^3/\text{C}$ $(n/n_{4f} \sim 1)$. This value is in agreement with results presented in [9-10] for light hexaborides RB_6 (R-La, Ce, Pr, Nd). The transition to AF(I) phase in GdB_6 is accompanied by a drastic decrease of $R_H(T)$ down to -6.7×10^{-4} cm³/C at 6 K. According to the approach presented in [9-10] for CeB₆-NdB₆ the obtained results may be attributed to the effect of 5d-states spin polarization below T_{N1} and the formation of spin polarons of a small radius in AF state of GdB_6 . On the other hand, the possible coherent displacement of Gd^{3+} ions inside the boron cage, proposed in [7], may also lead to the appearance of above mentioned anomalies. Additional measurements of transport and magnetic properties are required to elucidate the nature of both: the Hall effect enhancement below the T_{N1} and the emergence of anomalous Hall effect in AF(II) phase.

Fig. 2. The temperature dependence of Hall coefficient $R_H(T) = \rho_{H1}(T)/H$ in magnetic field $\mu_0 H = 1$ T (see the text).

4. Conclusions

The angular dependences of Hall resistivity of GdB_6 have been investigated. The appearance of the anomalous Hall effect in AF (II) phase was detected for the first time.

Acknowledgments

This work was supported by the Department of Physical Sciences of RAS (program Strongly Correlated Electrons in Metals, Semiconductors, and Magnetic Materials), Slovak Scientific Grant Agencies VEGA-2/0106/13, APVV-0132-11 and the Center of Excellence of the SAS.

References

- R.M. Galera, P. Morin, S. Kunii, T. Kasuya, J. Magn. Magn. Mat. 104-107, 1336 (1992).
- [2] S. Kunii, K. Takeuchi, I. Oguro, K. Sogiyama, A. Ohya, M. Yamada, Y. Koyoshi, M. Date, T. Kasuya, J. Magn. Magn. Mat. 52, 275 (1985).
- [3] D.F. McMorrow, K.A. McEwen, J-G. Park, S. Lee, D. Mannix, F. Iga, T. Takabatake, *Physica B* 345, 66 (2004).
- [4] K. Kuwahara, S. Sugiyama, K. Iwasa, M. Kohgi, M. Nakamura, S. Kunii, *Appl. Phys. A* 74, S302 (2002).
- [5] R.M. Galera, D.P. Osterman, J.D. Axe, J. Appl. Phys. 63, 3580 (1988).
- [6] H. Nazaki, T. Tanaka, Y. Ishizawa, J. Phys. C: Sol. St. Phys. 13, 2751 (1980).
- [7] M. Amara, S.E. Luca, R.-M. Galéra, F. Givord, C. Detlefs, S. Kunii, *Phys. Rev. B* 72, 064447 (2005).
- [8] M. Reiffers, J. Šebek, E. Šantavá, G. Pristáš, S. Kunii, *Phys. Stat. Sol. B* 243, 313 (2006).
- [9] N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, A.V. Kuznetsov, N.A. Samarin, A.V. Semeno, N.Yu. Shitsevalova, *JETP* 104, 120 (2007).
- [10] M.A. Anisimov, A.V. Bogach, V.V. Glushkov, S.V. Demishev, V.B. Filipov, N.Yu. Shitsevalova, N.E. Sluchanko, arXiv/1006.0124v1.