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The Hall e�ect of GdB6 has been studied on high quality single crystals in the temperature range 2�150 K
and in magnetic �eld of 1 T. The obtained data allow to detect anomalies in the antiferromagnetic (AF) phase
including (i) a drastic enhancement of negative Hall coe�cient below TN1 ≈ 15.5 K and (ii) the appearance of an
anomalous Hall e�ect at TN2 ≈ 4.7 K. Possible scenarios of the AF ground state formation are discussed.
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1. Introduction

Gadolinium hexaboride (GdB6) is thought to be a typi-
cal, spin only, Heisenberg magnet since the Gd3+ ion does
not have the orbital degrees of freedom (L = 0, S = 7/2).
However the magnetic structure of GdB6, which is char-
acterized by two successive �rst-order AFM transitions
(AF(I) ordering below TN1 ∼ 15 K, and AF(II) phase at
temperatures T < TN2 ∼ 5�10 K), is still a subject of
discussion [1 � 8]. Recent studies of neutron di�raction
and X-ray di�raction have shown that this compound ex-
hibits a complex commensurate magnetic structure with
a wave vector km = [1/4, 1/4, 1/2] at T < TN1 [3 � 6].
Additionally, lattice distortions with q1 = [1/2, 0, 0] and
q2 = [1/2, 1/2, 0] were observed in [3, 5] and allowed
Amara et al. [7] to suggest the displacement waves sce-
nario based on the coherent displacement of Gd3+ ions
inside the boron cages below TN1. At the same time
the authors of [7] pointed at T < TN2 to the existence
of an additional satellite [1/4, 1/4, 1/2] identical to the
magnetic wave vector km, and they proposed a complex
displacement scheme in the low AF(II) phase. In this
respect the investigation of Hall e�ect is important to
provide necessary information to describe the magnetic
ground state of GdB6 and its evolution.

2. Experimental details

GdB6 high quality single crystal (TN1 ≈ 15.5 K,
TN2 ≈ 4.7 K) was grown by the crucible-free inductive
zone melting in argon gas atmosphere. The control of
the sample quality was performed by electron microprobe
and X-ray di�raction analysis. The angular dependences
of Hall resistivity ρH(ϕ) have been measured in the tem-
perature range 2�150 K in magnetic �eld 1 T by stepwise
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sample rotation technique in �xed magnetic �eld, applied
perpendicular to the rotation axis. The dc-current was
applied along < 110 > axis, which was also the axis of
sample rotation (see the inset in Fig. 1). The descrip-
tion of the experimental setup was presented previously
in [9�10].

Fig. 1. The angular dependences of Hall resistivity of
GdB6, recorded in magnetic �eld µ0H = 1 T at various
temperatures in the range 2�150 K, corresponding to
(a) AF(II), (b) AF(I) and PM phases. The solid lines
display the approximation by the cosine-law (1). The
inset in the panel (b) illustrates the scheme of the Hall
e�ect measurements, n|| < 001 >.

3. Experimental results and discussion

Figure 1 illustrates the angular dependences of Hall
resistivity measured in low magnetic �eld µ0H = 1 T for
(a) AF(II), (b) AF(I) and PM phases of GdB6. In the
temperature interval 6 � 150 K, corresponding to PM and
AF(I) phases the experimental data presented in Fig. 1b
have been analyzed by the simple relation

ρH(ϕ) = ρH0 + ρH1 · cos(ϕ− ∆ϕ), (1)
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where ρH0 is the constant bias term and ρH1 is the main
component of the Hall signal. A similar type of ρH(ϕ)
dependence was detected experimentally in PM phases
of many AF metallic systems, including heavy fermionic
CeAl2, light hexaborides CeB6 [9], PrB6, NdB6 [10] and
dodecaborides RB12 (R-Lu, Ho, Er, Tm). Such be-
haviour of Hall resistivity can be attributed to the varia-
tion of the H vector's normal component in accordance
with the harmonic law, when the sample is rotating in
magnetic �eld.
The curves of ρ(ϕ) measured in AF(I) state of GdB6

show the absence of any appreciable contribution of a
second harmonic ∼ ρH2 · cos 2ϕ to the Hall signal (see
Fig. 1b). This result is opposite to the case of RB6 (R-
Ce, Pr, Nd), where a signi�cant component of second
harmonic was detected in AF state (phase II for CeB6)
[9�10].
The most crucial changes in the form of angular depen-

dences of Hall resistivity are observed upon the transition
to the AF(II) phase at T < TN2. In this state the ρH(ϕ)
curves demonstrate a meander-type behaviour with ex-
tended ρH(ϕ) = const (plateau) regions, which are fol-
lowed by periodical switching of the Hall resistivity in
the narrow vicinity of < 111 > directions (with a width
smaller than 5◦, see Fig. 1a). Moreover, hysteresis is also
detected on ρH(ϕ) curves at T < TN2, measured for the
sample rotated in opposite directions. Note that similar
meander-type ρH(ϕ) dependences were previously reg-
istered both in the AF state of CeB6 [9] and in the low
temperature micromagnetic phase of FeSi (see the discus-
sion in [9]). The appearance of these singularities of the
Hall resistance in combination with the drastic discrep-
ancy of the ρH(ϕ) data near 180◦ for di�erent direction
of rotation, indicate an emergence of anomalous compo-
nent in the Hall resistance due to a appreciable magnetic
contribution below TN2.
The analysis of angular dependences of the Hall resis-

tance based on Eq. 1 at 6 � 150 K allows to determine
the shape of the RH(T ) = ρH1(T )/H curve (see Fig. 2).
In the temperature range 2 � 150 K the Hall coe�cient is
negative and RH is virtually independent on temperature
in the PM state, having a value RH ≈ −4× 10−4 cm3/C
(n/n4f ∼ 1). This value is in agreement with results pre-
sented in [9�10] for light hexaborides RB6 (R-La, Ce,
Pr, Nd). The transition to AF(I) phase in GdB6 is
accompanied by a drastic decrease of RH(T ) down to
−6.7 × 10−4 cm3/C at 6 K. According to the approach
presented in [9�10] for CeB6-NdB6 the obtained results
may be attributed to the e�ect of 5d-states spin polar-
ization below TN1 and the formation of spin polarons of
a small radius in AF state of GdB6. On the other hand,
the possible coherent displacement of Gd3+ ions inside
the boron cage, proposed in [7], may also lead to the
appearance of above mentioned anomalies. Additional
measurements of transport and magnetic properties are
required to elucidate the nature of both: the Hall ef-
fect enhancement below the TN1 and the emergence of
anomalous Hall e�ect in AF(II) phase.

Fig. 2. The temperature dependence of Hall coe�cient
RH(T ) = ρH1(T )/H in magnetic �eld µ0H = 1 T (see
the text).

4. Conclusions

The angular dependences of Hall resistivity of GdB6

have been investigated. The appearance of the anoma-
lous Hall e�ect in AF (II) phase was detected for the �rst
time.
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