Proceedings of the 15th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 17-21 2013

Magnetization Studies of $Cu_{0.058}TiSe_2$ Near a Quantum Critical Point

P. HUSANÍKOVÁ^{a,b,*}, V. CAMBEL^a, J. Fedor^a, J. Šoltýs^a, G. Karapetrov^b

^aInstitute of Electrical Engineering, Slovak Academy of Sciences, Dúbravska cesta 9, 841 04 Bratislava, Slovakia

^bDepartment of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, 191-04 PA, USA

We study superconducting properties of highly underdoped Cu_{0.058}TiSe₂ single crystal by means of bulk magnetization measurements. We extract the upper critical field, H_{c2} , for magnetic field applied parallel, as well as perpendicular to the sample planes. Obtained values, $H_{c2}^{ab}(0) = 1.03$ T and $H_{c2}^{c}(0) = 0.54$ T, define a moderate anisotropy of the upper critical fields of 1.90. From the upper and lower critical fields we extract the Ginzburg-Landau parameters $\kappa_{ab}(0) = 26.3$, and $\kappa_c(0) = 12.6$ that classify Cu_{0.058}TiSe₂ as an extreme type II superconductor.

DOI: 10.12693/APhysPolA.126.336

PACS: 74.25.Ha, 74.25.Op, 74.20.De

1. Introduction

 $Cu_x TiSe_2$ is a recently discovered superconductor with the coexisting charge ordered and superconducting (SC) phases for $0.04 \le x \le 0.06$ [1]. There are open questions regarding the mechanism of superconductivity [2] and the number of SC gaps in this system [3–6]. Characterization of superconductivity in optimally doped polycrystalline samples [1], slightly underdoped $Cu_{0.07}TiSe_2$ [7], and overdoped $Cu_{0.10}TiSe_2$ single crystals [8] was reported. However, few works are available that systematically study SC properties [1, 3, 6]. In this communication we report magnetization studies on highly underdoped $Cu_{0.058}TiSe_2$ single crystal with Cu concentration near the quantum critical point for the charge density wave (CDW) phase.

2. Experiment

 $Cu_x TiSe_2$ single crystals were grown using the iodine vapor transport method in evacuated silica ampoules in a gradient furnace with the lower temperature part set to 720 °C and the temperature gradient of 80 °C/m. The energy dispersive X-ray spectroscopy (EDS) was used to establish the quantitative elemental analysis of the crystals. Magnetization measurements down to 1.8 K were performed in SQUID magnetometer and VSM option of PPMS (Quantum Design).

3. Results

The concentration of copper in the sample, established by EDS is 1.90 ± 0.04 at.%, i.e. $x = 0.058 \pm 0.0013$. The dimensions of the sample are $1 \times 1 \times 0.09$ mm³. Figure 1 shows the reversible magnetization isotherms for Cu_{0.058}TiSe₂ for H||c for temperatures 1.8 - 2.5 K. They were acquired as $(M_d + M_u)/2$, where M_d is the magnetization measured at decreasing, and M_u at increasing magnetic field. The inset shows the transitions from superconducting to normal state, defining the upper critical fields for different temperatures, $H_{c2}^c(T)$. H_{c2} at zero temperature, $H_{c2}(0)$, was extracted from the data close to T_c (not shown) using Werthamer-Helfand-Hohenberg formula [9] $H_{c2}(0) = -0.693T_c(dH_{c2}/dT)|_{T_c}$ and the values were found to be $H_{c2}^{ab}(0) = 1.03$ T and $H_{c2}^c(0) = 0.54$ T. The values are slightly lower than those for the slightly underdoped Cu_{0.07}TiSe₂ studied previously [7].

Fig. 1. Reversible M(H) curves for H||c. The grey rectangle shows an area that is zoomed in the inset. The inset shows the transitions from SC to normal state, defining $H_{c2}(T)$.

Their ratio defines the anisotropy of H_{c2} , which is 1.90, the value somewhat higher than that for Cu_{0.07}TiSe₂ [7]. Furthermore, we calculate coherence lengths, $\xi_{ab}(0)$ and $\xi_c(0)$, using the anisotropic GL formulae [10] $H_{c2}^c(0) = \phi_0/[2\pi\xi_{ab}^2(0)]$, $H_{c2}^{ab}(0) = \phi_0/[2\pi\xi_{ab}(0)\xi_c(0)]$, where ϕ_0 is the flux quantum, $\phi_0 = 2.07 \times 10^{-7}$ G cm². The calculated values are $\xi_{ab}(0) = 24.2$ nm and $\xi_c(0) = 12.7$ nm.

Furthermore, we measured the first penetration field for $Cu_{0.058}TiSe_2$ for H||c, as well as H||ab. Figure 2 shows zero-field cooled (ZFC) magnetization isotherms for H||c (for temperatures 1.8 K – 2.5 K) and H||ab (for temperatures 1.9 K – 2.5 K). The first penetration field

^{*}corresponding author; e-mail: petra.husanikova@gmail.com

Fig. 2. Zero-field cooled (ZFC) virgin magnetization curves. Arrows indicate the first penetration fields, $H_p(T)$. Left: H||c, T = 1.8 K-2.5 K (0.1 K steps). Right: H||ab, T = 1.9 K-2.5 K (0.1 K steps).

Fig. 3. First penetration field, $H_p(T)$ for H||c (blue circles), lower critical field, H_{c1} for H||c (red triangles) and H_{c1} for H||ab (black squares). Inset: ZFC normalized M(T) for H = 0.1 Oe, indicating a sharp SC transition with a maximum slope at ~ 2.6 K, assigned as a SC critical temperature T_c .

for each temperature is acquired as a field at which a deviation from the ideal Meissner-state screening occurs. The obtained $H_p(T)$ points have a linear dependence for both directions of the applied magnetic field (Fig. 3) and the extrapolated values are $H_p(0) = 10.2$ Oe (H||c) and $H_p(0) = 24.6$ Oe (H||ab) with the effective superconducting critical temperature $T_c \approx 2.6$ K which coincides with the maximum slope of ZFC M(T) curve shown in the inset of Fig. 3. After a demagnetizing correction for $H||c H_{c1}^{c}(0)/H_{p}^{c}(0) = 1/\tanh\sqrt{0.67b/a} \approx 4.4$, where b is the sample thickness and a is its width [11], we obtain $H_{c1}^c(0) \approx 44$ Oe. For H||ab, no correction is needed and therefore $H_{c1}^{ab}(0) = 24.6$ Oe. The superconducting anisotropy is temperature independent between $\sim 0.7T_c$ and T_c . Using $H_{c1}^c(0) = \phi_0 [\ln \kappa_c(0) + 0.5] / [4\pi \lambda_{ab}^2(0)],$ $H_{c1}^{ab}(0) = \phi_0 [\ln \kappa_{ab}(0) + 0.5] / [4\pi \lambda_c(0) \lambda_{ab}(0)],$ where $\kappa_c =$ λ_{ab}/ξ_{ab} and $\kappa_{ab} = \lambda_{ab}/\xi_c$, we extracted GL penetration depths $\lambda_{ab}(0) \approx 336$ nm and $\lambda_c(0) \approx 726$ nm. The ratio $\lambda_c(0)/\lambda_{ab}(0) \approx 2.16$ is somewhat higher than $\xi_{ab}(0)/\xi_c(0) \approx 1.90$. The GL numbers extracted from $H_{c2}^{i}(0)/H_{c1}^{i}(0) = 2\kappa_{i}^{2}/(\ln \kappa_{i} + 0.5)$ are $\kappa_{ab}(0) \approx 26.3$ and $\kappa_c(0) \approx 12.6$. They classify $Cu_{0.058}$ TiSe₂ as an extreme type II superconductor.

4. Conclusions

We have studied anisotropic SC properties of highly underdoped $Cu_x TiSe_2$ single crystal with the copper concentration near the CDW quantum critical point by means of bulk magnetization measurements. We extracted parameters as the upper and lower critical fields for H||ab and H||c. All these quantities are somewhat lower than those found for slightly underdoped $Cu_{0.07}TiSe_2$ [7], resulting in a SC anisotropy coefficient 1.9, that is slightly larger than 1.65 found for $Cu_{0.07}TiSe_2$. It is interesting to note that SC anisotropy of this system is the lowest among wellknown SC members of transition metal dichalcogenides, as 2H-NbS₂ [12], 2H-NbSe₂ [13], Na_xTaS₂ [14], and 2H-TaSe₂ [15]. On the other hand, GL numbers were found almost unchanged compared to $Cu_{0.07}TiSe_2$.

Acknowledgments

This work was supported by Slovak Grant Agency APVV, projects APVV-0036-11 and VVCE-0058-07, and by the Research & Development Operational Program funded by the ERDF, "*CENTE*", ITMS code 26240120011(0.5).

References

- E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimczuk, A.P. Ramirez, N.P. Ong, R.J. Cava, *Nature Phys.* 2, 544 (2006).
- [2] J. van Wezel, P. Nahai-Williamson, S.S. Saxena, *Phys. Rev. B* 81, 165109 (2010).
- [3] M. Zaberchik, K. Chashka, L. Patlag, A. Maniv, C. Baines, P. King, A. Kanigel, *Phys. Rev. B* 81, 220505(R) (2010).
- [4] A.D. Hillier, P. Manuel, D.T. Adroja, J.W. Taylor, A.K. Azad, J.T.S. Irvine, *Phys. Rev. B* 81, 092507 (2010).
- [5] S.Y. Li, G. Wu, X.H. Chen, L. Taillefer, *Phys. Rev. Lett.* 99, 107001 (2007).
- [6] J. Kačmarčík, Z. Pribulová, V. Pal'uchová, P. Szabó,
 P. Husaníková, G. Karapetrov, P. Samuely, *Phys. Rev. B* 88, 020507(R) (2013).
- [7] E. Morosan, L. Li, N.P. Ong, R.J. Cava, *Phys. Rev. B* 75, 104505 (2007).
- [8] P. Husaníková, J. Kačmarčík, V. Cambel, G. Karapetrov, Solid State Comm. 151, 227 (2011).
- [9] E. Helfand, N.R. Werthamer, *Phys. Rev.* 147, 288 (1966); N.R. Werthamer, E. Helfand, P.C. Hohenberg, *Phys. Rev.* 147 295 (1966).
- [10] J.R. Clem, *Physica C* **162-164**, 1137 (1989).
- [11] E.H. Brandt, *Phys. Rev. B* **59**, 3369 (1999).
- [12] M. Leroux, P. Rodiere, L. Cario, T. Klein, *Physica B* 407, 1813 (2012).
- [13] L. Chen, J. Zuo, Y. Lu, H. Huang, *Physica C* 471, 1591 (2011).
- [14] L. Fang, Y. Wang, P.Y. Zou, L. Tang, Z. Xu, H. Chen, C. Dong, L. Shan, H.H. Wen, *Phys. Rev. B* 72, 014534 (2005).
- [15] K. Yokota, G. Kurata, T. Matsui, H. Fukuyama, *Physica B* 284-288, 551 (2000).