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First-Principles Study of Kondo Insulator SmB6
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We applied the Perdew-Burke-Ernzerhof hybrid functional (PBE0) within the density functional theory (DFT)
to study electronic properties of the heavy fermion Kondo semiconductor SmB6. The calculation of the Hartee-Fock
exchange contribution to the exact-exchange within the atomic sphere approximation for bulk SmB6 represents
a computationally e�cient, parameter-free method that provides good qualitative and quantitative agreement
with photoemission experiments. Speci�cally, we found an energy di�erence of 7 eV between the occupied and
unoccupied correlated Sm f states. Furthermore, the spin-orbit coupling yields a splitting of the occupied Sm f
states of about 1 eV in agreement with recent angular resolved photoemission spectroscopy. The electronic spectrum
in the vicinity of the X point shows a hybridization between the Sm 5d conduction band and the localized Sm 4f
states at the Fermi level. This might lead to a transport gap opening.
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SmB6 is a typical mixed valence heavy fermion Kondo
semiconductor belonging to the class of rare-earth hexa-
borides. Its electronic properties at high temperatures
can be viewed as independent localized moments (f�
electrons) interacting with a sea of conduction electrons.
At low temperature the periodic arrangement of the spins
creates a Kondo lattice and the hybridization between lo-
calized f -electrons and conduction bands leads to a nar-
row hybridization gap opening.

Pioneering electronic band structure calculations by
Yanase and Harima [1], using the local spin-density ap-
proximation (LSDA) with spin-orbit interaction, yield a
narrow energy gap of about 14 meV at the Fermi level,
but the splitting of 0.7 eV between Sm f5/2 and f7/2
states is inadequately described due to improper treat-
ment of the correlation e�ects within LSDA. The split-
ting between the �lled and empty f bands is expected to
be about 7 eV according to photoemission experiments
[2, 3]. A more proper treatment of the correlated f states
within the LSDA+U method showed a reasonable split-
ting of the occupied and empty f bands [4]. Although
the LSDA+U provides reasonably correct average posi-
tions for the occupied Sm f states (useful for further
atomic multiplet positioning in energy) when compar-
ing to the XPS spectra [4], it improperly describes the
density of states (DOS) for the occupied Sm f states
in the energy window of 5 eV below the Fermi level,
namely the Sm2+ 6H, 6F and 6P multiplets. Recently a
Green function scheme based on the Gutzwiller method
was used to predict a topological Kondo insulating phase
in SmB6 [5]. Although this technique captures the low
energy hybridization around the Fermi level, it leads to
a strong localization of the Sm f states and can not
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describe properly the experimentally observed splitting
of about 1 eV of 6H and 6F multiplets. On the other
hand, the density functional mean-�eld theory within the
Hubbard-I approximation provides good agreement be-
tween the partial DOS of the Sm f -electrons and the 6H
and 6F peak positions [6]. Despite the satisfactory agree-
ment, the previous approaches rely on a priory unknown
Hubbard and exchange parameters and, in addition, suf-
fer from the double counting problem. A parameter-free
alternative to the calculations of correlated systems is the
use of hybrid functionals.

Here we present calculations based on the Perdew-
Burke-Ernzerhof hybrid functional (PBE0) [7�9], con-
sidered for correlated Sm f -electrons within the on-
site approximation [10], as implemented in the WIEN2k
package [11]. The on-site approximation considers the
Hartree-Fock method only inside the atomic spheres.
This provides a signi�cant reduction of the computa-
tional cost [12], eluding di�culties due to the strong
nonlocal nature of the exchange potential. The approx-
imation is, therefore, less suitable in a weakly corre-
lated regime and does not improve gaps in semiconduc-
tors. However, it allows orbital resolved healing for the
strongly correlated electrons which are poorly described
by the LSDA.

In Fig. 1 we show the SmB6 total DOS and the or-
bital resolved DOS for d states and relativistic 5/2 and
7/2 f states of the Sm atom. We found that the PBE0
separates six occupied Sm f states and eight unoccupied
states of about 7 eV in agreement with photoemission ex-
periments [2, 3]. The unoccupied f7/2 states are broad-
ened due to hybridization with the d states in the range of
3 eV. The occupied f states form two narrow peaks in the
DOS, just below the Fermi level. The spin-orbit coupling
contributes signi�cantly to the splitting of the states of
about 1 eV, as observed in recent angle-resolved photoe-
mission spectroscopy (ARPES) measurements [13]. The
peak in the vicinity of the Fermi level is dominated by
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the f5/2 states, whereas the other peak is formed with
both the f5/2 and f7/2 relativistic states.

Fig. 1. Density of states (DOS) of SmB6 calculated us-
ing PBE0 hybrid functional. The energy is measured
with respect to the Fermi level EF . The inset shows the
crystal structure of SmB6.

Despite the quasiparticle character of the quantum me-
chanical states in the system, we show in Fig. 2 the band
structure along the high symmetry lines, with atomic
and orbital resolved characters for the Sm atom. At the
Fermi level there is apparent hybridization of the local-
ized Sm f states with a wide dispersive valence band hav-
ing Sm d-orbital character as well as contribution from
the B atoms. The hybridization around the X point is,
therefore, not entirely an on-site e�ect. Due to the spin-
orbit coupling, the localized Sm f states split about 1 eV.
This is also reported in ARPES experiments [13].

Fig. 2. Calculated band structure of SmB6 along high
symmetry lines using PBE0 hybrid functional. The cir-
cles' radii correspond to the atomic and orbital resolved
character of the bands.

Performing similar calculations at the DFT+U level for
both the fully localized limit [14] as well as the around
mean �eld approximation [15] we have found that, in

contrast to the hybrid functional approach, the DFT+U
method is not able to reproduce correctly the 1 eV split
of the valence Sm f states which is observed in ARPES
experiments [13].
Although our calculations with PBE0 properly de-

scribe the localized Sm f states, they can not provide
a conclusive prediction for the hybridization gap value.
The localized band at the Fermi level is bended upward
with a maximum at the M point, closing the transport
gap. Therefore, the PBE0 functional is not well suit-
able for reproducing the speci�c Kondo induced trans-
port physics in the system. For this further improvement
in the description of the correlation e�ects is required.
In conclusion, we have applied the PBE0 hybrid func-

tional to study the electronic properties of the SmB6. We
have found a well quantitative behaviour of the localized
correlated Sm f states which is in agreement with spec-
troscopic experiments.
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