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Heavy Quasiparticles in Yb Compounds:
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Results for the magnetic-�eld-induced changes of the heavy quasiparticles in YbRh2Si2 are presented. The
bands are determined by means of the Renormalized Band method. The progressive de-renormalization of the
quasiparticles in the magnetic �eld, as well as the many-body enhancement of the Zeeman splitting are accounted
for, using �eld-dependent quasiparticle parameters deduced from Numerical Renormalization Group studies.
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1. Introduction

The temperature versus magnetic �eld phase diagram
of the heavy fermion (HF) compound YbRh2Si2 exhibits
numerous anomalies [1, 2]. The present paper focuses on
the anomalies which are observed in various thermody-
namic and transport properties in the Fermi liquid state
in high magnetic �elds [3].

2. Model and methods

The anomalous electronic properties of metals contain-
ing lanthanide atoms on regular lattice sites are conve-
niently described in terms of the f-electron Green's func-
tion

Gf (kω) = (G−1
f ;loc(ω)− (W (kω)−w(ω)))−1, (1)

where k and ω denote wave vector and frequency, G−1
f ;loc

is the fully renormalized local f-Green's function and
W (kω),w(ω) account for the hybridization with the con-
duction states. (For the notation see [4].) As written, the
Green's functions are matrices in the basis of the local
Crystalline Electric Field (CEF) eigenstates. The low-
energy excitations � the heavy fermions � are obtained by
linearizing the frequency dependence of G−1

f ;loc(ω), which
leads to e�ective band structure problems for the poles
and residues of Gf (kω). They are calculated by means
of the Renormalized Band (RB) method, which combines
material-speci�c ab initio methods and phenomenological
considerations in the spirit of Landau. The central idea
is to account for the local many-body e�ects contained
in the expansion of G−1

f ;loc(ω) by introducing a single pa-
rameter, which is subsequently �tted to the coe�cient
of the linear speci�c heat. The scheme has successfully
described the Fermi liquid state of various HF systems
[5�8]. Assuming that an external magnetic �eld a�ects
the conduction states only weakly it is conveniently ex-
tended to the case of �nite external magnetic �elds [9, 10]

Gf (kω;B) =

(G−1
f ;loc(ω;B)−G−1

f ;loc(ω) +G−1
f (kω))−1. (2)
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In the present calculation, the variation with magnetic
�eld of the quasiparticle parameters is obtained from �ts
to �eld-dependent quasiparticle Density of States (DOS)
of the single-impurity Anderson model [11, 12]. The re-
sulting e�ective band structure is calculated with [13].

3. Results

The results for the DOS are displayed in Fig. 1. The
strongly anisotropic hybridization between the f -states
and the conduction bands leads to pronounced van Hove-
singularities in the DOS which correspond to Lifshitz
transitions of the iso-energy surfaces. The topologies of

Fig. 1. Quasiparticle DOS of YbRh2Si2 at B = 0 as
calculated from the Renormalized Bands (upper panel)
and variation with magnetic �eld in the basal plane of
the quasiparticle DOS at the Fermi energy (lower panel).
The DOS at di�erent magnetic �elds, displayed in the
insets, clearly show a Zeeman splitting of the van Hove
singularity. The inset in the upper panel displays the
Brillouin zone of the tetragonal body-centered lattice
and the special points.
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the latter de�ne four di�erent energy regimes, indicated
by vertical lines in the upper panel. The existence of
these di�erent regimes is re�ected in the variation with
magnetic �eld of the quasiparticle DOS at the Fermi en-
ergy. The characteristic features are (i) a continuous de-
crease resulting from the de-renormalization of the heavy
quasiparticles and (ii) discontinuous changes at well de-
�ned values of the magnetic �eld, resulting from Lifshitz
transitions of the Fermi surface. The variation with mag-
netic �eld of the DOS at the Fermi energy agrees well
with the measured DOS as can be seen from Fig. 2.

Fig. 2. Comparison with experiment: Variation with
magnetic �eld in the basal plane of the quasiparticle
DOS at the Fermi level D(0), derived from the RB cal-
culation (blue circles), and measured DOS deduced from
the speci�c heat coe�cient measured at ambient pres-
sure (black circles)[1].

4. Conclusions

In conclusion, the following picture emerges: To quan-
titatively understand the unusual low-temperature be-
havior of YbRh2Si2 in high magnetic �elds we have
to account for both local many-body e�ects and co-
herence structures from the periodicity of the lattice.
The magnetic-�eld-induced topological transitions of the
Fermi surface are also re�ected in the transport proper-
ties of YbRh2Si2 [14, 15]. The results suggest that it will
be di�cult to extract the zero-�eld Fermi surface from
de Haas � van Alphen or Shubnikov � de Haas exper-
iments. In fact, it should be determined from Angle-
Resolved Photoemission (ARPES) studies [16].
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