The Rare-earth Based Single-ion Magnet CsNd(MoO$_4$)$_2$

V. Tkáča,*, K. Tibenskáb, A. Orendáčováa, M. Orendáča, A. G. Andersc, V. Pavlíkd, A. Fehera

aInstitute of Physics, Faculty of Sciences, P. J. Safárik University, Park Angelinum 9, 041 54 Košice, Slovakia
bFaculty of Aeronautics, Technical University, Rampová 7, 041 21 Košice, Slovakia
cInstitute of Low Temperature Physics and Engineering, Lenin Av. 47, 3 101 64 Kharkov, Ukraine
dInstitute of Experimental Physics SAV, Watsonova 47, 040 01 Košice, Slovakia

Specific heat, magnetization and DC susceptibility of the single crystal CsNd(MoO$_4$)$_2$ have been investigated nominally, in the temperature range from 100 mK to 300 K and magnetic field up to 5 T. The systems offer a possibility to study low-dimensional phenomena with the strong magnetic anisotropy, changing from the easy-plane to the easy-axis type [1]. The measurements of the specific heat, DC susceptibility and magnetization of CsNd(MoO$_4$)$_2$ have been performed to identify the magnetic subsystem of the compound. The results of the data analysis will serve as a starting point to the investigation of the spin dynamics determining the response of the studied SIM to the application of a high-frequency magnetic field.

1. Introduction

The present work is devoted to the study of CsNd(MoO$_4$)$_2$, the candidate for novel mononuclear lanthanide-based single-ion magnets (SIMs). The compound belongs to the group of the rare-earth dimolybdates ARE(MoO$_4$)$_2$, where A represents alkaline metal. The systems offer a possibility to study low-dimensional phenomena with the strong magnetic anisotropy, changing from the easy-plane to the easy-axis type [1]. The measurements of the specific heat, DC susceptibility and magnetization of CsNd(MoO$_4$)$_2$ have been performed to identify the magnetic subsystem of the compound. The results of the data analysis will serve as a starting point to the investigation of the spin dynamics determining the response of the studied SIM to the application of a high-frequency magnetic field.

2. Experimental details

CsNd(MoO$_4$)$_2$ crystallizes in the orthorhombic system (space group D_{2h}^2) with the cell parameters $a = 9.55$ Å, $b = 8.23$ Å, and $c = 5.13$ Å [2]. The ground multiplet of Nd$^{3+}$ is $^4I_9/2$ and is split in the crystal field of low-symmetry into 5 doublets. Specific heat has been experimentally studied in the temperature range from 120 mK to 2 K in zero magnetic field using a dual-slope method. The sample with mass 24.9 mg was attached to the heat reservoir in the dilution 3He-4He refrigerator. Specific heat measurement in the temperature range from 2 to 20 K and magnetic field up to 4 T has been performed in the commercial Quantum Design PPMS device on the sample with $m = 3.7$ mg. The sample was glued on "L" shaped silver holder to achieve the orientation of the magnetic field parallel to the c axis. DC susceptibility and magnetization studies of the single crystal with $m = 13.7$ mg have been performed in the same magnetic-field orientation in the commercial Quantum Design SQUID magnetometer in the temperature range from 2 to 300 K and magnetic fields up to 5 T.

3. Results and discussion

Temperature dependence of the specific heat in zero magnetic field is characterized by a slight decrease down to 1 K and a significant upturn appearing below 0.4 K (Fig. 1). CsNd(MoO$_4$)$_2$ is a magnetic insulator, thus the total specific heat consists of the phonon and magnetic contribution, the former manifesting above 1 K as bT^2 dependence and the latter as a/T^2. The fitting procedure in the temperature interval between 1 and 2 K yielded estimations of the separate contributions with $a = 0.058$ J/Kmol and $b = 0.0015$ J/K2mol. Rather steep upturn at low temperatures reflects the formation of magnetic correlations. Previous specific heat studies of CsGd(MoO$_4$)$_2$ [3] and CsDy(MoO$_4$)$_2$ [4] observed a phase transition to the ordered magnetic state at 0.45 K and 1.3 K, respectively. In both cases, the specific heat near the phase transition reached the values 25–30 J/Kmol while the specific heat of CsNd(MoO$_4$)$_2$ is about 2 J/Kmol at the lowest temperature, $T = 120$ mK. The magnetic entropy, $S = 1.62$ J/Kmol, calculated in the whole experimental temperature interval represents only 30% of the maximal entropy of the system with an effective spin $1/2$. The low values of the entropy and specific heat indicate that the transition to the magnetic
The rare-earth based single-ion magnet CsNd(MoO$_4$)$_2$ will be located at temperatures well below 120 mK. Applied magnetic field induces a round anomaly shifting to higher temperatures with increasing magnetic field [Fig. 1 (inset)].

The behavior of the magnetic specific heat in non-zero magnetic field (Fig. 2) can be well described with a standard two-level model. The application of the model yielded the best agreement with the g-factor value 3.08.

![Fig. 1. The temperature dependence of the total specific heat of CsNd(MoO$_4$)$_2$ in zero magnetic field (circle). The solid line represents a phonon contribution $C_{ph} = bT^3$. Inset: The temperature dependence of the heat capacity of CsNd(MoO$_4$)$_2$ in nonzero magnetic fields.](image1)

![Fig. 2. The temperature dependence of the magnetic specific heat C_{mag} of CsNd(MoO$_4$)$_2$ obtained from the total specific heat by subtracting a phonon contribution bT^3. The solid lines correspond to the specific heat of a two-level model with $g = 3.08$.](image2)

The analysis suggests that higher energy doublets do not contribute to the specific heat at low temperatures and CsNd(MoO$_4$)$_2$ can be approximated by the model of an ideal paramagnet with the effective spin $S' = \frac{1}{2}$ at temperatures above 2 K. Accordingly, the magnetic field dependence of the magnetization at the constant temperature 5 K can be well described using Brillouin function with $g = 3.08$ (Fig. 3). Similarly, DC susceptibility data can be fitted to Curie-Weiss law (Fig. 3 insert) with Curie paramagnetic temperature $\theta = -1.05$ K and $g = 3.3$ when assuming $S' = \frac{1}{2}$.

4. Conclusions

Analysis of the specific heat, magnetization and DC susceptibility indicates very weak magnetic correlations in CsNd(MoO$_4$)$_2$ and dominant influence of the crystal field produced by the first coordination sphere of Nd$^{3+}$ ion. The crystal field is responsible for rather large energy separation between the ground and first excited doublet. These features suggest CsNd(MoO$_4$)$_2$ can be considered as a representative of a single-ion magnet in which magnetic relaxation can be expected. In future, the study of the dynamic properties will be performed.

Acknowledgments

This work was supported by the projects APVV 0132-11, ITMS 26220120005 and VEGA 1/0143/13. Financial support from US Steel DZ Energetika is greatly acknowledged.

References