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Phase Transitions in a Coupled Electron and Spin Model
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The thermodynamics of a simple electron-spin model proposed recently for a description of magnetization

processes in rare-earth tetraborides is studied numerically by the canonical Monte Carlo method in two-dimensions.
The model is based on the coexistence of two subsystems, and namely, the spin subsystem described by the Ising
model and the electronic subsystem described by the free-electron model on the Shastry-Sutherland lattice (SSL).
Moreover, both subsystems are coupled by the anisotropic spin-dependent interaction of the Ising type. At T = 0
the system exhibits the magnetization plateau (MP) at m/ms = 1/2, 1/3, 1/5, 1/7, 1/9 and 1/11 of the saturated
spin magnetization ms. For the largest phases corresponding to m/ms = 0, 1/3 and 1/2 we have examined the
nature of the phase transitions from the low-temperature ordered phase (LTOP) to the high-temperature disordered
phase (HTDP). It is shown that all phases persist also at �nite temperatures (up to the critical temperature Tc)
and that the phase transition at the critical point is of the second order for the m/ms = 0 phase and of the �rst
order for the m/ms = 1/3 and 1/2 phases.
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Recently we have proposed a new model [1] for descrip-
tion of a fascinating sequence of MPs in rare-earth tetra-
borides observed at fractional values of magnetization,
e.g., m/ms = 1/2, 1/9, 1/11 in TmB4 [2], m/ms = 1/2,
4/9, 1/3, 2/9 and 7/9 in TbB4 [3], m/ms = 1/3, 4/9 and
3/5 in HoB4 [4]. The model is based on the coexistence
of spin and electron subsystems in given materials (with
the SSL structure) and the coupling between them. Sup-
posing that these subsystems interact only via the spin
dependent Ising interaction Jz, the Hamiltonian of the
system can be written as

H =
∑
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where d+iσ, diσ are the creation and annihilation operators
of itinerant electrons in the d-band Wannier state at site
i and niσ = d+iσdiσ. The �rst term of Eq. 1 is the kinetic
energy corresponding to the quantum-mechanical hop-
ping of itinerant d electrons between sites i and j. These
intersite hopping transitions are described by the matrix
elements tij , which are −t if i and j are the nearest neigh-
bours, −t′ if i and j are the next-nearest neighbours and
zero otherwise. The second term represents the above
mentioned anisotropic, spin-dependent local interaction
of the Ising type between the itinerant electrons and lo-
calized spins Szi = ±1/2, that also interact mutually via
the Ising interaction (the second row of Eq. 1). J , J ′

are the antiferromagnetic exchange coupling between all
nearest neighbour bonds (J) and next-nearest neighbour
bonds in every second square (J ′) of the SSL [5]. The
last terms in the �rst and second row describe action of
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the magnetic �eld on the itinerant electrons and local-
ized spins. For this simple model we have found [1], that
switching on of the spin-dependent interaction (Jz) be-
tween the electron and spin subsystems and taking into
account the electron hopping on the nearest (t) and next-
nearest (t′) lattice sites of the SSL lead to stabilization of
new MPs. In addition, to the Ising MP at m/ms = 1/3
we have found new MPs located at m/ms = 1/2, 1/5,
1/7, 1/9 and 1/11 [1], what is in a very good agreement
with the experimental measurements in rare-earth tetra-
borides [2]. In the present paper we extend numerical
calculations for this model to non-zero temperatures with
a goal to answer the questions about the temperature
stability of these phases and the type of phase transi-
tions from the LTOPs to the HTDP. The numerical cal-
culations are done by a straightforward extension of the
canonical Monte Carlo method discussed extensively in
our previous paper [6]. To identify the transition tem-
peratures from the LTOPs to the HTDP, and the type
of the phase transition, we have calculated numerically
the speci�c heat C = (〈E2〉 − 〈E〉2)/(L/τ2), the thermal
average of the spin occupation ws = 〈s〉 and the energy
distribution P (E), where 〈E〉 = 1

Z

∑
s,wd Ee−E/τ (Z =∑

s,wd e−E/τ , E =
∑
i εi(s)w

d
i ) and summation goes over

all distributions of spins s = {Sz1 , Sz2 , ..., SzL} on a lattice
of L sites and over all distributions of electrons (wd) on
single energy levels εi of H (τ = kBT ).

Using this method we have performed exhaustive nu-
merical studies of the model (1) for the following selected
model parameters Jz = 4, t = 4, t′ = 0.4t, J/J ′ = 1
(for which the best correspondence of theoretical and
experimental results has been observed at τ = 0 [1])
and selected values of h corresponding to the most in-
teresting physical cases. In particular, we have chosen
h = 0.5 as a representative value for the m/ms = 0
phase, h = 3 for the m/ms = 1/3 phase and h = 4.1
for the m/ms = 1/2 phase. To exclude the �nite size ef-
fects, the numerical calculations have been done for sev-
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eral SSLs from L = 6 × 6 up to L = 18 × 18 sites with
the periodic boundary conditions. Our numerical results
obtained within the canonical Monte Carlo method for
C, ws and P (E) are depicted in Fig. 1.

Fig. 1. Row 1: The speci�c heat as a function of τ
for di�erent values of h and L. Rows 2-4: The average
spin occupation ws calculated for di�erent values of τ , h
(m/ms). Black (gray) dots correspond to the up (down)
spin orientation. The radius of the circle on site i is
proportional to 〈Sz

i 〉. Row 5: The energy distribution
P (E) as a function of E calculated for di�erent values
of h and τ (near τc).

One can see that, for all selected values of h, corre-
sponding to fractional MPs with m/ms = 0, 1/3 and
1/2, there exists a sharp low-temperature peak which
scales with increasing cluster size L, that indicates the
presence of the phase transition from the LTOP to the
HTDP. In particular, for h = 0.5 (with an antiferro-
magnetic ground-state arrangement) we have detected a
sharp low-temperature peak located at relatively large
value of τ ∼ 1.8. This maximum is obviously connected
with a transition from the antiferromagnetic chessboard
structure to the homogeneous phase. This fact is sup-
ported by the behaviour of the average spin occupation
ws and the energy distribution P (E) near the transition
point τ → 1.8. As illustrates the behaviour of ws, the an-
tiferromagnetic chessboard structure persists for all tem-
peratures up to the transition point, and the increasing
temperature τ → τc only resizes the average magnetic
moment on each site. At the transition point this type of

ordering is fully destroyed. When the temperature is fur-
ther increasing the homogeneous spin state is detected.
The typical examples for representative temperatures,
below τc (τ = 0.05 and 1.72) and above τc (τ = 2) are il-
lustrated in Fig. 1. To identify the type of the phase tran-
sition, we have calculated the energy distribution P (E)
using the method of Challa et al. [7]. One can see that
for h = 0.5 the energy distribution P (E) exhibits the
clear one-peak structure and thus the phase transition
from the LTOP to the HTDP is the second order phase
transition. Thus the fundamental question mentioned
above, and namely, if the ground-state arrangements de-
tected for our simple spin-electron model, proposed for
a description of rare-earth tetraborides, persist also at
non-zero temperatures, was answered positively (at least
for the phase m/ms = 0).The same calculations we have
performed also for the case h = 3 with m/ms = 1/3
and the case h = 4.1 with m/ms = 1/2. We have found
that the transition from the LTOP to the HTDP is of
the �rst order for the case m/ms = 1/3 (with the tran-
sition temperature two times smaller in comparison to
the m/ms = 0 case) and of the second order for the
m/ms = 1/2 (with the transition temperature approxi-
matively ten times smaller than in the case m/ms = 0).
In summary, we have examined the nature of the phase

transitions from the LTOPs to the HTDP in a simple
coupled electron-spin model on the SSL. As the low-
temperature ordered phases we have considered the spin
structures corresponding to the largest MPs on the mag-
netization curve (at m/ms = 0, 1/3 and 1/2). It was
shown that all phases persist also at �nite temperatures
and that the phase transition at the critical point is of
the second order for the m/ms = 0 phase and of the �rst
order for the m/ms = 1/3 and 1/2 phases.
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