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We study the phase diagram of the spin-3/2 Blume-Emery-Gri�ths model on a honeycomb lattice by Monte
Carlo simulations in order to verify the presence of some peculiar features predicted by the e�ective �eld theory
(EFT) with correlations. The locations of the order-disorder phase boundaries are estimated from thermal varia-
tions of the magnetic susceptibility curves. It is found that for positive values of the biquadratic interactions the
critical boundary shows a discontinuous character as a function of the single-ion anisotropy strength, in line with
the EFT expectations. However, for negative values of the biquadratic interactions the step-like variation of the
critical frontier predicted by EFT was not reproduced.
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1. Introduction

The spin-3/2 Blume-Emery-Gri�ths (BEG) model is
a spin-3/2 Ising model which includes both bilinear and
biquadratic interactions, as well as single-ion uniaxial
crystal-�eld anisotropy. It was introduced to understand
behavior of some real physical systems, such as ternary
mixtures. The model has been intensively studied by
various approaches (e.g., [1�6]), nevertheless, its critical
behavior is far from being well understood. Even in the
most studied case with zero biquadratic interactions, i.e.,
the Blume-Capel (BC) model, no consensus among var-
ious approaches has been established regarding whether
the �rst-order line separating (1/2, 1/2) and (3/2, 3/2)
ferromagnetic phases at low temperatures extends to the
disordered phase boundary line or it terminates at an
isolated point [3, 4].
The spin-3/2 BEG model with �nite biquadratic in-

teractions was much less investigated [3, 5, 6]. The cal-
culations by an e�ective �eld theory with correlations
(EFT) for the system on a honeycomb lattice [5] pro-
duced some peculiar features that could not be observed
in the spin-3/2 BC model. Particularly interesting was
the step-wise dependence of the phase boundary on the
single-ion anisotropy parameter for larger negative values
of the biquadratic interactions strength.
In the present investigations we employ Monte Carlo

(MC) simulations with the aim to verify whether the fea-
tures predicted by the EFT, in particular the step-wise
behavior of the phase boundary, are real or just artifacts
of the used approximation.

2. Model and methods

We consider the spin-3/2 BEG model on a honeycomb
lattice described by the Hamiltonian
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where Si = ±1/2,±3/2 is a spin on the i-th lattice site,
〈i, j〉 denotes the sum over nearest neighbors, J1 > 0 is
a ferromagnetic bilinear exchange interaction parameter,
J2 is a biquadratic exchange interaction parameter and
D is a single-ion anisotropy parameter.
The honeycomb lattice system is considered to consist

of two interpenetrating sublattices A and B. Then, as-
suming sublattice uniformity we can focus on an elemen-
tary unit cell comprising the central spin, let say from
the sublattice A, i.e., SA, and its three nearest neighbors
from the sublattice B, i.e., SB, and express its reduced
ground-state (GS) energy per spin as

e/J1 = −(3SASB + 3αS2
AS

2
B + ∆(S2

A + S2
B))/2, (2)

where α = J2/J1 and ∆ = D/J1. Then, in the param-
eter space (α,∆), GS is one of the states (±1/2,±1/2),
(±1/2,±3/2), (±3/2,±3/2), that minimizes expression
(2).
In order to study thermal behavior of the model and

to determine its phase diagram, we perform MC simula-
tions on a spin system of a moderate linear size of L = 48,
employing the Metropolis dynamics and applying the pe-
riodic boundary conditions. For thermal averaging we
consider N = 5 × 104 MCS (Monte Carlo sweeps) after
discarding another 104 MCS for thermalization. For con-
�gurational averaging and estimating the error bars, we
carry out three independent runs. The simulations are
performed within a wide range of the values of the re-
duced single-ion anisotropy parameter ∆ by varying the
reduced temperature kBT/J1. For each value of ∆ the
simulations start from high temperatures in the para-
magnetic region, using a random initial con�guration,
and then the temperature is gradually decreased with
the step ∆kBT/J1 = 0.05 and the simulation starts from
the �nal con�guration obtained at the previous tempera-
ture value. We calculate the total magnetization per site
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m = 〈M〉/L2 = 〈
∑L2

i=1
Si〉/L2 (3)

and the corresponding magnetic susceptibility

χ =
〈M2〉 − 〈M〉2

L2kBT
. (4)

The total magnetization serves as an order parameter,
i.e., it takes �nite values in the region of long-range mag-
netic ordering and vanishes in the paramagnetic region.
The transition points can be located from the suscepti-
bility maxima.
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Fig. 1. Temperature variations of (a) the magnetiza-
tion and (b) the susceptibility, for various values of the
single-ion anisotropy parameter ∆ and α = −2.
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Fig. 2. Phase diagrams for selected values of α. The
areas below and above the curves represent magnetically
ordered and disordered phases, respectively.

3. Results and discussion

The temperature dependencies of the magnetization
curves for di�erent values of the single-ion anisotropy
parameter ∆ are presented in Fig. 1a, for a selected
value of α = −2. The plots demonstrate that the low-
temperature region is long-range ordered for any value of
∆ and becomes disordered at higher temperatures. Note
that due to �niteness of the lattice, m remains �nite even
in the paramagnetic region and becomes zero only in the
thermodynamic limit of L→∞. However, the character
of the low-temperature ordered phase depends on ∆. As
discussed above, taking the value of α = −2, the system
is in GS (±1/2,±1/2) if ∆ < 3/4, in GS (±1/2,±3/2) if
3/4 < ∆ < 45/4, and in GS (±3/2,±3/2) if ∆ > 45/4.

The susceptibility curves corresponding to the magneti-
zation dependences in Fig. 1a are plotted in Fig. 1b. The
sharp peaks appear at the phase transition points.
The resulting order-disorder phase diagram, deter-

mined from the susceptibility peaks locations, is shown
in Fig. 2, for di�erent values of the exchange interaction
ratio α. The error bars represent standard deviations
of the peaks locations obtained from multiple MC runs.
In the phase diagrams we can observe that for positive
values of α, such as α = 2, the MC results con�rm the
discontinuous character of the critical line as a function
of the single-ion anisotropy strength observed in the EFT
study [5]. However, for negative values of α ≤ −1, the
non-monotonic step-like variation of the critical frontier
was not reproduced. Namely, only two steps associated
with the phase transitions from the state (±1/2,±1/2) to
(±1/2,±3/2) and then to (±3/2,±3/2) were observed.

4. Conclusions

We determined the phase diagram of the spin-3/2 BEG
model on a honeycomb lattice by MC simulations with
the goal to understand some unexpected features, such as
the step-wise behavior of the phase boundary, obtained
in the earlier study by EFT. For positive values of the
biquadratic interactions, our results con�rmed the dis-
continuous character of the critical line as a function of
the single-ion anisotropy strength. However, for larger
negative values of the biquadratic interactions the step-
like variation of the critical frontier was not con�rmed.
Therefore, the multiple steps in the EFT results are con-
sidered artefacts of the used approximation.
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