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The Green function theory is used to study the phenomenon of magnetic reorientation in the ferrimagnetic
system. The two-sublattice ferrimagnetic system, with di�erent spins and the intra-sublattice ferromagnetic ex-
change interactions, is considered. The magnon �uctuations supress in di�erent way the magnetic orders of the
sublattices and one obtains two magnetic orders. Each of these orders has di�erent reorientation temperatures.
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1. Introduction and fundamental equations

The phenomenon of the magnetic reorientation can be
qualitatively understood by consideration of the compet-
ing forces that favour di�erent directions of the magneti-
zation such as easy-axis single-ion anisotropy and dipolar
interaction. In addition, the magnetic reorientation can

be induced by applying a magnetic �eld [1].

We investigate the magnetic reorientation within the
Heisenberg model for the ferrimagnetic system in the ap-
proximation of two-sublattices with spins SA and SB at
the sublattice A and B sites, respectively. The Hamilto-
nian can be written as
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The �rst term is the operator of the inter-sublattice antiferromagnetic exchange interaction energy (J > 0); the second
term corresponds to two operators of the intra-sublattice ferromagnetic exchange interaction energy. The parameter
D > 0 denotes the inter-sublattice exchange anisotropy. The fourth term represents the single-ion anisotropy. The
transverse magnetic �eld hx is shorthand for gµBH.
The applied Green function method in this work was described in detail elsewhere [2�5]. The theory is based on a

transformation of the �xed coordinate system (x, y, z) into a local coordinate system (X,Y, Z). The Z axis is set to
be parallel to the magnetization direction. A remarkable result of this theory is that the e�ective �eld aligned parallel
to the Z axis can be written as a sum of the external magnetic �eld and an anisotropy �eld:

h = hx sin θ + 2K2〈SZα 〉
(
cos2 θα − (sin2 θα)/2]

)
Q(Sα), (2)

with Q
(Sα)
α = 1− [Sα(Sα+1)−〈(SZα )2〉]/2S2

α, (α = A,B). Angle θα denotes the orientation angle of the magnetization.

We introduce the Fourier transform Green functions (GF) G
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αβ(q, ω) = 〈〈S+
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lS−β 〉〉ωq (αβ = AA,BA,BB,AB),

l is a positive integer number: l ≤ 2S, q(qx, qy) is a wave vector). The remaining higher order GFs in the equations
of motion are decoupled by the Tyablikov approximation and by the generalized Callen decoupling [2]. We �nally
obtain the equations of motion in the following matrix form:
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, where P =
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We de�ne for the square lattice the following abbreviations:

J
Aq
B0 = JB0 + JAq , J

Bq
A0 = JA0 + JBq , Jα0 = 4〈SZα 〉(J +D), Z(l)

α = 〈[SZα , (SZα )lS−α ]〉, Jq = 4J cos(qx/2) cos(qy/2),

Jαq = Jα〈SZα 〉 (4− 2[cos qx + cos qy]) , tan θα =
hx −K2〈SZα 〉 sin3 θαQ(Sα)
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.

GFs have simple poles ω±, which can be obtained by solving the equation |P | = 0. Equations (3) can be solved by

�nding the inverse matrix P−1. We obtain for G
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AA(q, ω) the following form:
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After using the spectral theorem, we �nally obtain the correlation function C
(l)
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A 〉 for the sublattice A

(34)
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The integral in (6) goes over qx and qy in the �rst Brillouin zone which corresponds to a square lattice.

The Green function G
(l)
BB(q, ω) and the function ΦB can be obtained from (4) and (6) by substitution of indices

A ↔ B. From (5) we obtain for S ≥ 1 the system of algebraic equations for calculation of 〈SZA〉 or 〈SZB〉 (after
substitution A↔ B).

2. Results and conclusions

The components of the magnetization per site in the
�xed system (x, y, z) can be calculated from the equations
mz
A ≡ 〈SzA〉 = 〈SZA〉 cos θA, mx

A ≡ 〈SxA〉 = 〈SZA〉 sin θA,
(the sublattice A) and mx

B ≡ 〈SxB〉 = −〈SZB〉 sin θB ,
mz
B ≡ 〈SzB〉 = −〈SZB〉 cos θB (the sublattice B). The

spins for the sublattice A and B are 3/2 and 1, respec-
tively.
The reorientation temperatures TRα is de�ned as the

temperature at which the longitudinal magnetization mz
α

vanishes, the transverse magnetizationmx
α is nonzero and

the orientation angle |θα| = 90o. This can be seen in
Fig. 1, where we plot the z and x components of the
magnetization and the orientation angle θα as functions
of the reduced temperature kT/J in the sublattices A
and B.
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Fig. 1. The components of the magnetization and the
orientation angles as functions of the reduced tempera-
ture kT/J are shown for the sublattice A (A) and for the
sublattice B (B) for the parameters: J = 1.0, JA/J =
JB/J = 0.001, D/J = K2/J = 0.01, hx/J = 0.006 .
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Fig. 2. The reduced reorientation temperature
kTRA/J is shown as a function of the reduced trans-
verse magnetic �eld hx/J for the parameters J = 1.0,
JB/J = 0.1, K2/J = D/J = 0.005. The intra-
sublattice exchange interaction energies JA/J are
di�erent.

The di�erence between the Neel's theory and the
present Green function method is that Neel's theory pre-
dicts a temperature TN at which both the sublattice

A and B magnetizations become equal to zero. The
magnons in our considered system are a complicated mix-
ture of the transversal �uctuations of the sublattice A
and B spins. As a result, the magnon �uctuations su-
press in di�erent ways the magnetic orders of the A and
B sublattices and one obtains two magnetic orders [6].
Each of these orders has a di�erent reorientation tem-
perature.
In Fig. 2, the reduced reorientation temperature

kTRA/J of the whole system as a function of the re-
duced transverse magnetic �eld hx/J is presented for dif-
ferent reduced intra-sublattice exchange interaction en-
ergies JA/J . For hx/J > hxC/J the direction of the z-
component of magnetization of the whole system is in
the plane of the monolayer and the magnetic reorienta-
tion does not appear. On the other hand, the magnetic
reorientation can be observed for hx/J < hxC/J by in-
creasing the temperature. The critical hxC/J value does
not depend on the sublattice interaction JA.
In [6], the two-sublattice ferrimagnet with di�erent

spins and di�erent intra-sublattice ferromagnetic ex-
change interaction was considered within the modi�ed
spin-wave theory and two magnetic orders were obtained.
Unlike the model in [6], we have included in the Hamil-
tonian the single-ion anisotropy and the transverse mag-
netic �eld to consider magnetic reorientation within the
Green function theory. We obtained two magnetic orders;
each of these orders has di�erent reorientation temper-
atures (Fig. 1). Next, we determined the boundary be-
tween two states of the whole ferrimagnetic system with
di�erent orientations of the z-component of the magne-
tization (in-plane and out of plane), see Fig. 2.
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