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Hysteresis E�ect in Mean-Field Model
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A simple feedback loop and a mean-�eld approximation are employed to simulate the memory e�ect in the
exchange-coupled magnetic system. The nonlinearity of the feedback turns out to be the crucial factor for the
appearance of hysteresis loops. A threshold value above which the hysteresis disappears is the mean-�eld transition
temperature. Temperature dependence of the coercive �eld is investigated.
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1. Introduction

The phenomenon of hysteresis is omnipresent in the
world of physical systems. It was introduced into sci-
enti�c vocabulary about 130 years ago by the Scottish
physicist Alfred Ewing [1]. Hysteresis occurs in many
engineering, physical and economic systems. It has been
established that the prerequisite feature for it to appear
is the nonlinearity of the underlying dynamics. In the
area of magnetic phenomena, the early phenomenologi-
cal model of Lord Rayleigh formed the basis of the well-
known Preisach model of ferromagnetic hysteresis, which
has been further developed and widely discussed in a long
series of papers appearing up to the present day [2�4].
Stoner and Wohlfarth [5] explained the lag of the magne-
tization behind the external magnetic �eld within a sim-
ple micromagnetic model for the case of a single domain
particle of uniform magnetization. In their approach, the
crucial role was played by the magnetic anisotropy. The
advances in the statistical and computational physics en-
abled the investigation of hysteretic phenomena in real-
istic multiparticle and multidomain systems. The most
important results on hysteresis modeling are reviewed
in a number of useful monographs published during the
nineties of the last century [3, 6, 7]. The model considered
here is a quasi-classical model of quantum spins interact-
ing via a mean-�eld. It is demonstrated that a simple
feedback loop in such a system leads to the occurrence of
the memory e�ect. Most interestingly there is no internal
anisotropy term in the model system, the spin-spin inter-
action being of the isotropic Heisenberg type. The only
source of anisotropy is the interaction with the external
magnetic �eld. The laws of statistical physics averag-
ing out the contributions from the �eld-split multiplets
introduce to the system the nonlinearity that turns out
su�cient to yield the nontrivial lag of the magnetization
behind the changing external magnetic �eld.

2. Results

Let us brie�y describe the model components. The
de�ning feature of the system is its Hamiltonian, which
in the present case contains the isotropic Heisenberg cou-
pling
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Ĥ = −J
∑
<ij>

Ŝi · Ŝj + gµB

∑
i

Ŝi ·Hext (1)

where < ij > denotes the summation over the nearest-
neighbor pairs of spins and J is the exchange coupling
constant. The second term is the Zeeman interaction
with the external magnetic �eld, where g is the spec-
troscopic factor and µB denotes the Bohr magneton. In
the mean-�eld approximation, the interaction pattern de-
pendent on the lattice topology is simpli�ed by the re-
placement of the interaction with the neighboring spins
by that with the statistical expectation value of a single
spin operator. In this approximation the Hamiltonian
may be rewritten as follows

Ĥ = gµBŜ · (Hext +HMF ) (2)

with HMF = −zJ < Ŝ > /(gµB), where z denotes the
number of the nearest neighbours. On carrying out the
standard statistical averages one arrives at the formula
for the mean value of the magnetic moment which can
be readily translated in terms of the mean-�eld.

HMF =
zJS

gµB
BS

[
µBgS(Hext +HMF )

kBT

]
(3)

where S is the spin quantum number, and BS denotes
the Brillouin function. Equation 3 is the core of our
considerations. It de�nes a simple feedback loop, which
yields the saturated value of the mean magnetization
< µ̂ >= (gµB)

2/(zJ)HMF if a su�ciently high number
N of recursions is performed.
In what follows, the reduced measure of temperature

is used t = T/Tc where Tc = zJS(S + 1)/(3kB) is the
mean-�eld critical temperature. The magnetization is
normalized with respect to the maximal possible value
per spin, i.e., µmax = gµBS. The external magnetic �eld
Hext is measured relative to the maximal value of the
coercive �eld Hcmax = zJS/(gµB). Similarly, a dimen-
sionless unit is introduced to measure the hysteresis area
in the magnetization versus external magnetic �eld plane
(denoted here by Sh) by reference to its maximal possible
value Shmax = 4µmaxHcmax. In the dimensionless units
t, hMF = HMF /Hcmax, h = Hext/Hcmax, Eq. (3) reads

hMF = BS

[
3S

S + 1

h+ hMF

t

]
(4)

As can be seen from Eq. (4) the description of the evo-
lution of the loops in terms of the reduced quantities

(28)
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is independent of the speci�c value of the coupling con-
stant J , spectroscopic factor g, and the nearest neighbor
number z, which all enter the energy scale given by Tc.
However, the formula implies a dependence on the spin
value S. Figure 1 shows the temperature dependence of
hysteresis loops for two values of spin quantum number
S = 1/2 and S = 2, and for N = 100. One can see that
at very low temperatures the hysteresis loop acquires the
limiting shape of a rectangle. On raising the temperature
it shrinks and vanishes above the transition temperature
tc = 1. For higher spin values the coercive �elds are
suppressed which is consistent with the fact that the in-
teraction increases with increasing spin value.
Figure 1 depicts also the temperature dependence of

the hysteresis area for S = 1/2 and N = 100. The
hysteresis area monotonously decreases with increasing
temperature vanishing at tc = 1. In the case of a high
number of recursions, the coercive �eld can be found nu-
merically.

Fig. 1. Left: Hysteresis loops obtained for S=1/2
(solid line) and S=2 (dashed line) with N=100 at tem-
peratures t=0.002, 0.2, 0.4, 0.6, 0.8, 1.0. Right: Tem-
perature dependence of the hysteresis area for S = 1/2.

Fig. 2. Left: Con�guration of the magnetization curve
corresponding to the external �eld being equal to coer-
cive �eld. Right: Temperature dependence of the coer-
cive �eld.

Figure 2 shows two magnetization curves as func-
tions of the mean �eld m(hMF ) =< µ̂ > /µmax =
BS [3ShMF /(t(S + 1))]. One curve goes through the ori-
gin of the coordinate frame and corresponds to the case
where the external magnetic �eld vanishes. The other
curve is shifted to the right so that the line y = hMF is
tangent to it. As the zigzag curve, illustrating successive
moves of the feedback loop indicates, the latter con�gu-
ration corresponds to the threshold at which the magne-
tization will �ip over (change sign). The corresponding
shift can be found as the value of the following function

f(hMF ) = m(hMF ) − hMF at its maximum hmax. In-
deed, the necessary condition for the maximum ensures
the relevant curves are tangent. In Fig. 2 is also demon-
strated that the value of the function at its maximum is
equal to the shift of the magnetization curve and hence
to the coercive �eld. Figure 2 (right) shows the coercive
�eld vs. reduced temperature for three indicated spin
number values. There is a rather weak S-dependence,
practically not changing for S > 10.

3. Conclusions

Firstly, it is quite surprising that such a simple feed-
back loop based on the principles of statistical physics
should display a hysteretic behavior. This fact enforces
the view that one of the key conditions that must be sat-
is�ed for the hysteresis loop to appear is the nonlinearity
of the underlying model. Another crucial prerequisite
is the state of broken symmetry, which here is realized
by the action of the external magnetic �eld. The shape
of the loops were shown to depend on the spin number
value S, which intuitively derives from the S-dependence
of the interaction energy with external magnetic �eld.
At the same time, it remains independent of the mag-
nitude of exchange interaction J and the coordination
number z de�ning the internal energy scale in the sys-
tem. The threshold above which the hysteresis loop dis-
appears was shown to be placed at the transition tem-
perature Tc. The scale of the coercive �eld de�ned by its
maximal value Hcmax is proportional to the ratio of the
internal energy scale zJS2 to the single site magnetic
moment gµBS. Therefore, in contrast to the Stoner-
Wohlfarth model the relevant quantity in the mean-�eld
model is not anisotropy but isotropic exchange interac-
tion. The fact that the loops were obtained within a
physically plausible model points to the fact that they
may be treated as basic ingredients of the well-known
Preisach model, i.e., hysterons. Moreover, a less rough
treatment of spin interactions, where one would take duly
into account the quantum spin correlations, will proba-
bly give the scheme sensitive to the coordination number
z, i.e. to the topology of the spin lattice.
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