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Ground states of the frustrated spin-1 Ising-Heisenberg two-leg ladder with Heisenberg intra-rung coupling
and only Ising interaction along legs and diagonals are rigorously found by taking advantage of local conservation of
the total spin on each rung. The constructed ground-state phase diagram of the frustrated spin-1 Ising-Heisenberg
ladder is then compared with the analogous phase diagram of the fully quantum spin-1 Heisenberg two-leg ladder
obtained by density matrix renormalization group (DMRG) calculations. Both investigated spin models exhibit
quite similar magnetization scenarios, which involve intermediate plateaux at one-quarter, one-half and three-
quarters of the saturation magnetization.
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1. Introduction

Over the last few decades, quantum spin ladders have
been actively studied mainly in connection with spin-
liquid behaviour, quantum critical points and supercon-
ductivity under hole doping of some cuprates (see Ref. [1]
for a review). In particular, the frustrated spin-1/2
Heisenberg two-leg ladder exhibits a striking dimerized
ground state [2] and a low-temperature magnetization
process with an intermediate plateau and magnetization
jumps [3].
Another challenging topic of current research interest

consists of the theoretical investigation of related mod-
els such as the quantum spin-1 Heisenberg two-leg ladder
[4, 5]. The main goal of the present work is to �nd the
exact ground states of a simpler spin-1 Ising-Heisenberg
ladder and to contrast them with the respective ground
states of the pure quantum spin-1 Heisenberg ladder.
Note that the former model is analytically tractable us-
ing the procedure developed in Refs. [6, 7] and it brings
insight into the relevant behaviour of the latter not fully
integrable model.

2. Frustrated Ising-Heisenberg ladder

Consider �rst the frustrated spin-1 Ising-Heisenberg
ladder with the Heisenberg intra-rung interaction and
the unique Ising interaction along the legs and diago-
nals. The total Hamiltonian of the investigated model is
given by

Ĥ =

N∑
i=1

[JŜ1,i · Ŝ2,i + J1(Ŝ
z
1,i − h(Ŝz1,i + Ŝz2,i)

+Ŝz2,i) · (Ŝz1,i+1 + Ŝz2,i+1)], (1)

where Ŝα,i ≡ (Ŝxα,i, Ŝ
y
α,i, Ŝ

z
α,i) denotes spatial compo-

nents of the spin-1 operator, the former su�x α = 1 or
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2 enumerates the leg and the latter su�x speci�es a lat-
tice position within a given leg. The coupling constant J
denotes the isotropic Heisenberg intra-rung interaction,
the parameter J1 determines the Ising interaction along
the legs and diagonals, h is an external magnetic �eld.
For further convenience, let us introduce the spin op-

erator T̂ i = Ŝ1,i + Ŝ2,i, which corresponds to the to-
tal spin angular momentum of the ith rung. It can be
easily proved that the operators T̂

2

i and T̂ zi commute

with the Hamiltonian (1), i.e. [T̂
2

i , Ĥ] = [T̂ zi , Ĥ] = 0,
which means that the total spin of a rung and its z com-
ponent represent conserved quantities with well de�ned
quantum numbers. The complete energy spectrum of the
frustrated spin-1 Ising-Heisenberg ladder then readily fol-
lows from the relation

E = −2NJ +
J

2

N∑
i=1

Ti(Ti + 1)+

J1

N∑
i=1

T zi T
z
i+1 − h

N∑
i=1

T zi , (2)

which depends just on the quantum numbers Ti = 0, 1, 2
and T zi = −Ti,−Ti+1, ..., Ti determining the eigenvalues
of the total spin of the ith rung and its z spatial projec-
tion, respectively. Using this procedure, the spin-1 Ising-
Heisenberg two-leg ladder has been rigorously mapped to
some classical chain of composite spins and accordingly,
we can readily �nd all available ground states by looking
for the lowest-energy state of Eq. (2).

3. Frustrated Heisenberg ladder
Next, we will also consider the frustrated spin-1

Heisenberg two-leg ladder de�ned by the Hamiltonian

Ĥ =

N∑
i=1

[J Ŝ1,i · Ŝ2,i − h(Ŝz1,i + Ŝz2,i)

+J1(Ŝ1,i + Ŝ2,i) · (Ŝ1,i+1 + Ŝ2,i+1)], (3)
which represents the pure quantum analogue of the frus-
trated spin-1 Ising-Heisenberg ladder discussed previ-
ously. Taking advantage of the de�nition for the total

(24)
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spin of each rung, the Hamiltonian (3) of frustrated spin-
1 Heisenberg two-leg ladder can be rewritten into the
form

Ĥ = −2NJ +
J

2

N∑
i=1

T̂
2

i+

J1

N∑
i=1

T̂ i · T̂ i+1 − h
N∑
i=1

T̂ zi . (4)

According to Eq. (4), the frustrated spin-1 Heisenberg
ladder can be rigorously decomposed into the direct sum
of quantum spin chains with spin 0, 1 or 2 at each site.
The ground state of such a system can be shown to be
either a homogeneous chain, with the same spin at all
sites, or a chain with alternating spins on every other
site. Comparing the energy of the di�erent chains, ob-
tained either analytically or using DMRG simulations,
the exact ground-state phase diagram of the frustrated
spin-1 Heisenberg ladder can be constructed.

Fig. 1. Ground-state phase diagrams of the frustrated
spin-1 ladder described within: (a) the Ising-Heisenberg
model; (b) the pure Heisenberg model. For details see
the text.

4. Results and discussion

The constructed ground-state phase diagrams of the
frustrated spin-1 Ising-Heisenberg and Heisenberg lad-
ders are depicted in Fig. 1a and Fig. 1b, respectively.
The ground states of the spin-1 Ising-Heisenberg ladder
can be discerned according to the z projection of the
total spin on two consecutive rungs [T zi , T

z
i+1], because

Ti = |T zi | holds for all available ground states. The quan-

tum ground states [0,0], [0,1], [1,1], [2,±1] and [2,0] rep-
resent six di�erent phases, whereas Ti = T zi = 0 implies
a formation of two singlets on the ith rung, Ti = |T zi | = 1
entails only one singlet and Ti = |T zi | = 2 denotes fully
polarized rungs without singlets. Besides, the two ground
states [2,2] and [2,�2] are pertinent to the classical fer-
romagnetic and antiferromagnetic ordering of fully po-
larized rungs. The magnetization normalized with re-
spect to its saturation equals zero for [0,0] and [2,�2],
one-quarter for [0,1] and [2,-1], one-half for [1,1] and
[2,0], three-quarters for [2,1] and unity for [2,2]. Alto-
gether, it can be concluded that the frustrated spin-1
Ising-Heisenberg ladder always exhibits a stepwise mag-
netization curve, which involves intermediate plateaux at
one-quarter, one-half and three-quarters of the saturation
magnetization that are however of di�erent origin.
It is quite clear from Fig. 1b that the ground-state

phase diagram of the pure quantum Heisenberg lad-
der exactly coincides with that of the Ising-Heisenberg
ladder just for su�ciently weak inter-rung interactions
J1/J ≤ 0.5. A relatively good agreement between both
phase diagrams is still observed in the parameter space
0.5 ≤ J1/J ≤ 0.63, where the gapless phase [2] with a
continuously varying magnetization is present between
the intermediate plateaux instead of direct magnetiza-
tion jumps. The gapless phase [2] corresponds to the
Luttinger-liquid phase of the e�ective spin-2 quantum
Heisenberg chain. Finally, the gapped Haldane phase of
the e�ective spin-2 quantum Heisenberg chain emerges
for J1/J ≥ 0.63 at su�ciently low �elds.
In conclusion, we have rigorously found the ground

states of the frustrated spin-1 Ising-Heisenberg and
Heisenberg ladders in a magnetic �eld. It has been ver-
i�ed that the Ising-Heisenberg ladder always exhibits a
stepwise magnetization curve with three di�erent inter-
mediate plateaus, while the same quantum ground states
can be identi�ed in the pure quantum Heisenberg ladder
provided the intra-rung coupling is su�ciently large.
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