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We consider an exactly solvable version of the quantum spin-1/2 orthogonal-dimer chain with the Heisenberg
intra-dimer and Ising inter-dimer couplings. The investigated quantum spin system exhibits at zero temperature
fractional plateaux at 1/4 and 1/2 of the saturation magnetization and it has a highly degenerate ground state at
critical fields where the magnetization jumps. We study the field dependence of the specific heat at low temperature.
The lattice-gas description is formulated in a vicinity of critical fields to explain the low-temperature behaviour of

specific heat.
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1. Introduction

The orthogonal-dimer chain [1] constitutes a one-
dimensional counterpart of the well-known Shastry-
Sutherland lattice. The spin models on the latter lat-
tice are intensively studied in connection with a number
of fractional magnetization plateaux experimentally ob-
served in SrCuy(BOs3)2, RB4 (R denotes the rare-earth
element) and other magnetic compounds with competing
interactions [2].

In present paper we study a special version of the
orthogonal-dimer chain with the Ising and Heisenberg in-
teractions, which has been solved recently [3, 4]. The field
dependence of the specific heat is explored at low tem-
peratures and the lattice-gas model is used to describe
the low-temperature thermodynamics near critical fields.

2. Effective models and low-temperature
thermodynamics

The quantum spin-1/2 Heisenberg-Ising orthogonal-
dimer chain (see Fig. 1 in Ref. 4) considered here, is de-
scribed by the following Hamiltonian:
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where si'; denotes spatial projections (a = z,y, 2) of the
spin-1/2 operator, .J is the Heisenberg intra-dimer inter-
action between spins on vertical and horizontal bonds,
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and J; is the Ising inter-dimer interaction between spins
from different bonds, h is the external magnetic field.
Since z-component of the total spin on the Heisenberg
dimers becomes a conserved quantity, the model under
investigation can be presented as a classical spin chain
and solved exactly [3-5].

For easy reference, we mention here briefly the results
for the ground state obtained in Ref. 4. The zero-field
ground state for J; < v/2J is in the singlet-dimer (SD)
phase, which is defined by the product of singlet dimers
residing on all horizontal and vertical bonds. The zero-
field ground state changes for J; > v/2J to the modu-
lated antiferromagnetic (MAF) phase, which is character-
ized by antiferromagnetic ordering of completely polar-
ized vertical bonds. When the external field is switched
on, both zero-field ground states are first changed to the
modulated ferrimagnetic (MFI) phase, characterized by
staggering of the polarized and singlet states on vertical
bonds (1/4 plateau), and subsequently to the staggered
bond (SB) phase, characterized by staggering of the same
states on both types of bonds (1/2 plateau). Finally, all
spins are aligned in the field direction for strong enough
magnetic fields within the completely ordered ferromag-
netic (FM) state. It was also observed that the ground
state for critical fields is macroscopically degenerate.

The macroscopic degeneracy is of course lifted when
the field deviates from the critical value. If the field is
close to its critical value, the low-energy states can be
considered within an effective lattice-gas model. Such a
treatment was used for localized magnon states in frus-
trated magnets [6, 7]. If one considers in our model
a phase boundary between SD and MFI phases, both
phases as well as their mixture have the same energy. If
an empty site on some fictitious lattice is assigned to the
singlet state on a vertical bond and an occupied site to
the polarized spin up state, we can present the problem as
a lattice gas with an infinitely strong repulsion between
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particles on neighbouring sites. The degeneracy is lifted
in the vicinity of critical field, since the change of state
from a singlet to polarized on one vertical bond (i.e. de-
position of particle) costs the energy —(h— h£1/4)), where
h£1/4) =—\/J? + J12 + %. In general, such an effec-
tive lattice-gas model can be presented by the following

Hamiltonian:
N/2

Z Vining, —

where n; = 0,1 is the occupation number and V — oo
describes an infinitely strong repulsion. Here, the sum
extends over the vertical bonds only. The same holds
also in the vicinity of the SB-FM border, where the
magnetization jumps from 1/2 to the saturated value at
hg) = W—&—Jl. The only difference is that the config-
urations of all bonds should be taken into account in the
latter case and that the notation for empty and occupied
sites should be inverted.
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Fig. 1. Low-temperature specific heat vs. magnetic
field h: J =1, J; = 0.7, T = 0.025 (a), T = 0.05
(b). Solid (red) curves show the exact result, dashed
(blue) curves show the result of the lattice-gas model
near each critical point, dotted (green) curves show the
sum of all lattice-gas models’ contributions.

The similar procedure is valid also close to the MAF-
SB boundary (h$/? = \/J2+ J2 — J(1 — A)/2). The

ground state exactly at a critical field can be built from
any combination of singlet or polarized states on vertical
bonds. In the case we are going out of critical field the
degeneracy disappears and the energy of state starts to
depend on the states of neighbouring bonds:

wrr-sp _ N~ (= h{?)
pirrse o3 Rt J ooz, ()
i=1
where o7 = £1 correspond to the polarized spin up and

singlet bond states.

The free energy and all thermodynamic functions for
the models (2) and (3) can be easily calculated using
the transfer-matrix method (see e.g. [6,7]). Using the
thermodynamic relation for the specific heat per site
c = —T(0?F/0T?), one can show that the specific heat
behaves as ¢ ~ (h — h.)?/T? close to the critical field.

Figure 1 displays the field dependence of specific heat
at low temperatures, which shows a rapid decline near
critical field. Such behaviour can be explained using
the notion of the effective lattice-gas models considered
above. The specific heat of the lattice-gas models (2) and
(3) has minimum at a critical field that is enclosed by
additional maxima. Hence, it follows that the lattice-gas
models provide a good description of the low-temperature
specific heat in a vicinity of critical fields. The complete
form of the specific heat can be recovered if we sum up
contributions near all critical points, however, this pro-
cedure may over-estimate the specific heat at higher tem-
peratures with respect to the exact results.

In conclusion, we have examined the low-temperature
behaviour of the specific heat for the Heisenberg-Ising
orthogonal-dimer chain. We have observed that it has
minima at the critical fields, which can be explained
within the effective lattice-gas models.
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