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We consider an exactly solvable version of the quantum spin-1/2 orthogonal-dimer chain with the Heisenberg
intra-dimer and Ising inter-dimer couplings. The investigated quantum spin system exhibits at zero temperature
fractional plateaux at 1/4 and 1/2 of the saturation magnetization and it has a highly degenerate ground state at
critical �elds where the magnetization jumps. We study the �eld dependence of the speci�c heat at low temperature.
The lattice-gas description is formulated in a vicinity of critical �elds to explain the low-temperature behaviour of
speci�c heat.
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1. Introduction

The orthogonal-dimer chain [1] constitutes a one-
dimensional counterpart of the well-known Shastry-
Sutherland lattice. The spin models on the latter lat-
tice are intensively studied in connection with a number
of fractional magnetization plateaux experimentally ob-
served in SrCu2(BO3)2, RB4 (R denotes the rare-earth
element) and other magnetic compounds with competing
interactions [2].
In present paper we study a special version of the

orthogonal-dimer chain with the Ising and Heisenberg in-
teractions, which has been solved recently [3, 4]. The �eld
dependence of the speci�c heat is explored at low tem-
peratures and the lattice-gas model is used to describe
the low-temperature thermodynamics near critical �elds.

2. E�ective models and low-temperature

thermodynamics

The quantum spin-1/2 Heisenberg-Ising orthogonal-
dimer chain (see Fig. 1 in Ref. 4) considered here, is de-
scribed by the following Hamiltonian:

H =

N∑
i=1

Hi, H2i+1=J1[(sz1,2i + sz2,2i)s
z
1,2i+1

+sz2,2i+1(sz1,2i+2 + sz2,2i+2)] + J(s1,2i+1 · s2,2i+1)

−h(sz1,2i+1 + sz2,2i+1),

H2i = J(s1,2i · s2,2i)− h(sz1,2i + sz2,2i), (1)

where sαl,i denotes spatial projections (α = x, y, z) of the

spin-1/2 operator, J is the Heisenberg intra-dimer inter-
action between spins on vertical and horizontal bonds,
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and J1 is the Ising inter-dimer interaction between spins
from di�erent bonds, h is the external magnetic �eld.
Since z-component of the total spin on the Heisenberg
dimers becomes a conserved quantity, the model under
investigation can be presented as a classical spin chain
and solved exactly [3-5].
For easy reference, we mention here brie�y the results

for the ground state obtained in Ref. 4. The zero-�eld
ground state for J1 <

√
2J is in the singlet-dimer (SD)

phase, which is de�ned by the product of singlet dimers
residing on all horizontal and vertical bonds. The zero-
�eld ground state changes for J1 >

√
2J to the modu-

lated antiferromagnetic (MAF) phase, which is character-
ized by antiferromagnetic ordering of completely polar-
ized vertical bonds. When the external �eld is switched
on, both zero-�eld ground states are �rst changed to the
modulated ferrimagnetic (MFI) phase, characterized by
staggering of the polarized and singlet states on vertical
bonds (1/4 plateau), and subsequently to the staggered
bond (SB) phase, characterized by staggering of the same
states on both types of bonds (1/2 plateau). Finally, all
spins are aligned in the �eld direction for strong enough
magnetic �elds within the completely ordered ferromag-
netic (FM) state. It was also observed that the ground
state for critical �elds is macroscopically degenerate.
The macroscopic degeneracy is of course lifted when

the �eld deviates from the critical value. If the �eld is
close to its critical value, the low-energy states can be
considered within an e�ective lattice-gas model. Such a
treatment was used for localized magnon states in frus-
trated magnets [6, 7]. If one considers in our model
a phase boundary between SD and MFI phases, both
phases as well as their mixture have the same energy. If
an empty site on some �ctitious lattice is assigned to the
singlet state on a vertical bond and an occupied site to
the polarized spin up state, we can present the problem as
a lattice gas with an in�nitely strong repulsion between
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particles on neighbouring sites. The degeneracy is lifted
in the vicinity of critical �eld, since the change of state
from a singlet to polarized on one vertical bond (i.e. de-

position of particle) costs the energy −(h−h(1/4)
c ), where

h
(1/4)
c = −

√
J2 + J2

1 + J(3+∆)
2 . In general, such an e�ec-

tive lattice-gas model can be presented by the following
Hamiltonian:

HSD−MFI =

N/2∑
i=1

V nini+1 − (h− h(1/4)
c )ni, (2)

where ni = 0, 1 is the occupation number and V → ∞
describes an in�nitely strong repulsion. Here, the sum
extends over the vertical bonds only. The same holds
also in the vicinity of the SB-FM border, where the
magnetization jumps from 1/2 to the saturated value at

h
(1)
c = J(1+∆)

2 +J1. The only di�erence is that the con�g-
urations of all bonds should be taken into account in the
latter case and that the notation for empty and occupied
sites should be inverted.
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Fig. 1. Low-temperature speci�c heat vs. magnetic
�eld h: J = 1, J1 = 0.7, T = 0.025 (a), T = 0.05
(b). Solid (red) curves show the exact result, dashed
(blue) curves show the result of the lattice-gas model
near each critical point, dotted (green) curves show the
sum of all lattice-gas models' contributions.

The similar procedure is valid also close to the MAF-

SB boundary (h
(1/2)
c =

√
J2 + J2

1 − J(1 − ∆)/2). The

ground state exactly at a critical �eld can be built from
any combination of singlet or polarized states on vertical
bonds. In the case we are going out of critical �eld the
degeneracy disappears and the energy of state starts to
depend on the states of neighbouring bonds:

HMFI−SB =

N/2∑
i=1

(h− h(1/2)
c )

4
(1− σzi σzi+1), (3)

where σzi = ±1 correspond to the polarized spin up and
singlet bond states.
The free energy and all thermodynamic functions for

the models (2) and (3) can be easily calculated using
the transfer-matrix method (see e.g. [6,7]). Using the
thermodynamic relation for the speci�c heat per site
c = −T (∂2F/∂T 2), one can show that the speci�c heat
behaves as c ∼ (h− hc)2/T 2 close to the critical �eld.
Figure 1 displays the �eld dependence of speci�c heat

at low temperatures, which shows a rapid decline near
critical �eld. Such behaviour can be explained using
the notion of the e�ective lattice-gas models considered
above. The speci�c heat of the lattice-gas models (2) and
(3) has minimum at a critical �eld that is enclosed by
additional maxima. Hence, it follows that the lattice-gas
models provide a good description of the low-temperature
speci�c heat in a vicinity of critical �elds. The complete
form of the speci�c heat can be recovered if we sum up
contributions near all critical points, however, this pro-
cedure may over-estimate the speci�c heat at higher tem-
peratures with respect to the exact results.
In conclusion, we have examined the low-temperature

behaviour of the speci�c heat for the Heisenberg-Ising
orthogonal-dimer chain. We have observed that it has
minima at the critical �elds, which can be explained
within the e�ective lattice-gas models.
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