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PbSnS thin films were prepared by hot-wall vacuum evaporation. The Rutherford backscattering technique
was employed for the investigation of Pb,Sn;_,S thin films composition. With a help of atomic force microscopy
the main stages in the development of the thin films were characterized. Contact angle measurements of water
drop on Pb;Sn;_,S thin films have been conducted on our original setup.
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1. Introduction

Ternary semiconductor materials have attracted much
attention because of their potential application in pho-
tonic devices [1]. PbS—SnS materials are promising mate-
rials in photovoltaic, infrared detection [2]. In addition,
by using tin sulfide compounds in photovoltaic structures
the production costs of solar cells would decrease, be-
cause the materials involved are cheap, nonstrategic, and
abundant in nature.

As we know, the fabrication involves many steps, us-
ing different deposition methods. It is usually a time
consuming and expensive process. In general, the na-
ture of the surface of any material plays a crucial role
in device fabrication. The surface energy of the adhesive
material and the contact angle are the characteristics of
molecular adhesion. Sufficient wetting is necessary for
a good contact adhesion. The larger the wetting, and
hence, the smaller contact angle, the stronger the ad-
hesion and the greater the possibility for the adhesive
material filling the pores on the surface of the substrate.
If the adhesive material in the coating formed air bubbles
between the adhesive and the substrate, then these ar-
eas are potentially breaking the adhesive bonds in some
places as a result of the applied external force. Therefore,
the performance of the junction and the cell depends crit-
ically on composition, structure and morphology of the
absorber surface, whereas local inhomogeneity, chemical
composition and surface morphology determine surface
wettability. The wettability interferes with adhesion ab-
sorber surface [3] (and, in turn, with performance of the
junction), which in turn influences solar cell energy con-
version efficiency. Lokhande et al. [4] and Roh et al. [5]
propose to use contact angle measurements as a diagnos-
tic method to determine the quality of CulnSy absorbers
without forming an actual solar cell.
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The purpose of this project is to study morphology and
wettability of the surface of Pb,Sn;_,S films fabricated
in a wide temperature range. We use hot wall technique
for synthesis of polycrystalline thin films on glass sub-
strates. For the synthesis, the substrate temperature was
varied. Surface properties of thin films were studied by
using atomic force microscopy (AFM) and contact angle
measurements.

2. Experiment details

The polycrystalline Pb,Sn; .S ingots used as a source
material were synthesized by reaction of stoichiometric
mixtures of pure Sn and S (99.99%) and natural galena
(PbS). The mixture is sealed under 1.3 x 10~! Pa vac-
uum in quartz tube. It was placed vertically in an elec-
tric furnace and kept at 450 °C for 7 days and after that
at 700°C for 10 days. In order to avoid explosions due
to the sulfur vapour pressure, the tube was heated slowly
(25°C/h). Then the product was ground and mixed in an
agate mortar, sealed in a silica glass tube and reheated at
700 °C for 10 days. Crushed powder was used as raw ma-
terial for the hot wall vacuum evaporation (Fig. 1) onto
glass slides and molybdenum boat was used as evapora-
tor. The chamber pressure was about 3 x 10~ Pa. Sub-
strates were chemically cleaned, rinsed with water and
blown dry with compressed air before deposition. The
substrate temperature was measured using a chromel-
alumel thermocouple in contact with substrate surface.
Substrate and wall temperatures were 200 °C-382°C and
600 °C, respectively. The distance between source and
substrate has been maintained as constant at 12 cm, de-
position time was 30 min.

Atomic force microscopy (AFM) study of samples was
performed with an atomic force microscope “NT-206" us-
ing cantilevers CSC21. Roughness values in this paper
refer to the average surface roughness values, R,. The
roughness ratio k is defined as the ratio of true area of
the solid surface to the apparent area. AFM images were
analyzed using the SurfaceXplore 1.3.11 program.
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Fig. 1. Schematic diagram of a hot wall deposition
system.

The wetting behavior is characterized by a value of the
contact angle (6p). Contact angle measurements were
based on the sessile-drop method described in [6]. The
wetting agent was doubly distilled water. Besides contact
angle measurements based on the sessile-drop method
contact angle hysteresis evaluation was conducted by ex-
tension/contraction method. We measure the contact an-
gle in the state in which the droplet is attached to both
the needle tip and solid surface, and the droplet amount
is increased or decreased. The angle formed while in-
creasing volume is called the advancing angle (6,), like-
wise the angle while decreasing volume is called the re-
ceding angle (6;). Contact angle hysteresis is defined
as the difference between advancing and receding angles:
AO =6, — 6,

The wetting of rough textured surfaces can be de-
scribed by models: Wenzel, Cassie-Baxter, liquid film
state. The Wenzel model describes homogeneous wetting
regime (when the liquid fills in the roughness grooves of
a surface). In the case when the liquid does not fill in the
roughness grooves of a surface, the Wenzel model is not
sufficient. The drop of water creates on the substrate
small air pockets underneath it. It is a heterogeneous
wetting regime and surface is a composite of two types
of patches: air and solid. This heterogeneous surface is
explained using the Cassie-Baxter model. The Wenzel
state switches to the liquid film state when the pene-
tration front spreads beyond the drop and a liquid film
forms over the surface. The film smoothes the surface
roughness and the Wenzel model no longer applies.

The Rutherford backscattering technique was em-
ployed for the investigation of target composition and
for depth profiling of components in films. The energy
of He™ ions was 1.5 or 2.0 MeV, and the scattering, en-
try and escape angles were 160°, 0°, and 20°, respec-
tively. The energy resolution of the analyzing system
was 15 keV. Concentration profiles of components were
evaluated using the RUMP code computer simulation.
However, the quantitative application of that method
is restricted to laterally homogeneous and smooth films.
Surface roughness, such as grains, can cause diffusion-like
broadening of the spectrum and it is difficult to render
the interpretation of the result. The effect of rough films
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on a smooth substrate was investigated by Mayer [7].
The effect of layer roughness on the shape of RBS spec-
tra was investigated for incident He™ ions backscattered
from a gold layer at a scattering angle of 165°. In RBS
geometry, the layer roughness results in broadening of
the low energy edge of thin films and the development of
tails stretching to low energies.

3. Results and discussion

Some AFM images of the Pb,Sn;_,S films are shown
in Fig. 2. These pictures indicate how the shape of the
surface changes with an increase of substrate tempera-
ture. The topography and wettability parameters are
listed in Table I.

Fig. 2. AFM pictures (3D) of Pb,;Sn;_,S samples de-
posited at different substrate temperatures Ty: 2 —
T, = 206°C, 4 — Ty = 240°C; 7 — Ty = 290°C; 11 —
T, =320°C; 15 — Ts = 330°C.

We can identify and describe the main types of thin
films synthesized at different substrate temperatures.
Group 1 consists of samples 1, 2, 3, 8. They are united
by the disorder of the crystallites on the surface, the ab-
sence of a specific shape, size and orientation of crys-
tallites. The samples are composed of vertically placed
crystallites. With increasing T crystallites become more
developed, the density of their distribution is reduced. It
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TABLE I

Topography and wettability parameters of Pb,Sn;_,S thin
films.

Ts R. o 1 10 2 101 | Wenzel
No. [°C] [nm] k f o [°]|e: [°]]|e:s [°] o 1°]
1 |200| 18.5 |{1.009(0.592|119.0| 168.1 | 11.9 118.7
2 1206 | 23.6 [1.007]0.507| 79.8 | 170.4 | 9.6 79.9
3 | 210 | 42.1 [1.043]0.620| 50.0 | 1563.9 | 26.1 52.0
4 1240 | 47.0 {1.020]0.621|125.4| 161.6 | 18.4 124.6
5 | 268 | 14.0 {1.001|0.698| 70.7 | 175.3 | 4.7 70.7
6 | 280 |16.9 [1.031|0.647| 98.4 | 156.8 | 23.2 98.1
7 1290 | 70.9 [1.074]0.830(107.6| 134.2 | 45.8 106.4
8 1300 (116.0(1.049|0.726| 40.9 | 147.9 | 32.1 43.9
9 |302|37.7(1.024|0.745| 82.7 | 156.1 | 23.9 82.9
10 [ 319 | 36.7 |1.037]0.746| 93.9 | 150.8 | 29.2 93.8
11 | 320 | 69.3 |1.048|0.744| 82.0 | 147.4 | 32.6 82.4
12 | 320 | 70.5 |1.059|0.764| 94.5 | 143.1 | 36.9 94.2
13 | 325 | 18.8 |1.004|0.759| 78.7 | 169.6 | 10.4 78.7
14 | 330 |{107.81.113|0.684| 95.0 | 137.4 | 42.6 94.5
15 (330 | 32.2 |1.054]0.637|100.7| 150.5 | 29.5 100.1
16 | 361 | 56.7 |1.036|0.731|113.0| 151.9 | 28.1 112.2
17 | 382 (240.6(1.216|0.774|117.9| 120.8 | 59.2 112.6

can be seen that the size of the largest crystallites and
R, increase with T} increasing, because of the sintering,
wherein small grains coalesce to form larger grains.

Group 2 consists of samples 4 and 6. These films
consist of vertically placed crystals of approximately the
same shape and size. It also appears that the grown gran-
ules are loosely packed together and form a highly rough
surface. The crystallite size, the R, of the films decreases
with increasing 7.

The third group consists of film 5, 7, 10, 12, 13. The
entire deposited material is subdivided into a more or less
continuous layer and crystallites grown on it. The main
film consists of stacked blocks with their c-axis always
parallel to growth direction. The size of the blocks is dif-
ferent for the different samples and has no clear depen-
dence on the temperature of the substrate. The crystal-
lites grown on the surface of the films have the geometric
shape: rectangular blocks for lower temperatures, and
the pyramid to the higher temperature of the substrate.

Samples 9, 11, 16 can also be counted to the Group 3,
but we distinguish them in a separate Group 4. Their
difference is that the nanorods (whiskers) grow on the
surface of the film. Thin film 9 has few droplets on its
surface only. Such droplets were already observed on the
surface of PbS, PbTe, PbSe thin films prepared by hot-
-wall vacuum evaporation (HWVE) [8§].

The last group 5 consists of the samples 14, 15, 17.
Ordered placement of blocks in these films (as in groups
3 and 4) is replaced by a disordered one. The crystals on
the surface of films are placed randomly and undirected.
There is no definite shape and size of the crystallites.

The images of the all thin films showed a densely
packed microstructure free of pinholes. The grains are
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well connected with each other, which is essential for the
development of p—n junction.

Figure 3 shows the position of a water drop on the
surface of Pb,Sn;_,S samples.

Fig. 3.

Water drop on surfaces of Pb,Sni_,S de-
posited at different substrate temperatures 7s: 1 —
T, = 200°C; 5 — Ts = 268°C; 8 — Ty = 300°C; 16 —
Ty = 361°C.

We consider two factors affecting the wettability of the
surface: elemental composition and topography. Due to
the nature of the method of producing thin films, we can
neglect the chemical inhomogeneity of the samples. At
first, let us analyze which model should be applied to
describe the wettability of rough thin films. Let us find
a critical wetting angle. The critical contact angles O}
and 62 can be found after estimation of the part f of the
total surface area wet by the liquid. f was estimated us-
ing the “SurfaceXplore” and “Gwyddion” programs with a
help of histograms of the height distribution. The level of
water penetration into the pores between the crystallites
is defined around the assumption that this level is below
the most common height of the crystallite. Further, we
find @) using three proposed formulae for all films:

cos @ = fcos Oy +1— f (liquid film state),
cos © = kcos Oy (Wenzel state),

cos O = fcos Oy + f—1 (Cassie state).

We found that only for the Wenzel formula the con-
tact angle 6 is in the interval of 62 < 6y < 6.. For
the other formulae 6y is outside the respective regions
0 < 6y < ©2 and B! < Oy < 180°. Based on these
calculations, we use the Wenzel model to describe the
wettability of our films; i.e. drop of water do not form air
bubbles between the water and the substrate (the Wenzel
model definition). The relative deviation of the Wenzel
formula contact angle from the experimentally measured
O range from —4.5% to 7.4%.

In some cases, the Cassie model can work outside O} <
6y < 180° [9]. After the first results of the Pb,Sn;_,S
samples water wettability investigation, questions were
raised about the applicability of the Wenzel model to
samples 4, 6, 9, 11, 16, which consist of stacked blocks
with their c-axis parallel to the growth direction and the
crystallites (pyramids or whiskers) grown on it.

To check the results, studies of the contact angle hys-
teresis of water drop have been conducted. The contact
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angles in both states are comparable (the Wenzel angle is
slightly smaller than the Cassie one), but the hysteresis
is dramatically affected by the change of state: it is found
to be 10-20 times larger in the Wenzel regime. This is
a sign of air trapping: because the drop sits on a cush-
ion of air, its pinning on the solid (which is responsible
for the hysteresis) is highly reduced [10]. In the case of
Cassie model, perimeter of contact between the drop and
the surface immediately begins to decrease at contraction
of the drop.

The surface of the thin films will be characterized by a
dimensionless quantity L/H, where L — the maximum
distance between the columns within a single unit cell
texture, and H — height of the columns. Texture coeffi-
cient L/H determines whether the meniscus of the liquid
touches the lower surface of texture. Their relationship
predicts the existence and the transition from the Wenzel
model to the Cassie model.

TABLE II

Values of the advancing, receding, and hys-
teresis contact angles, and texture coefficient
of Pb.Sni_,S samples.

No. | 6:[°] | @]°] | A@]|°] | L/H
4 40.5 127.0 86.50 1.02
6 37.6 101.3 63.70 2.94
9 32.3 86.1 53.80 4.00
11 48.6 84.0 35.40 5.06
16 30.0 113.5 83.50 2.50
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Fig. 4. Values of the advancing, receding, and hystere-
sis contact angles as a function of the texture coefficient.

The values of the receding contact angles look almost
independent from the texture coefficient, while the value
of the advancing contact angle decreases with increasing
texture coefficient (Table II and Fig. 4). A© therefore
decreases with increasing period texture. The contact
angle hysteresis of the samples is not less than 35.4°,
hence we must use the model Wenzel description of their
wettability.

In experiments [11] it has been shown that for a
glass substrate R, = 2.2 nm, and the thickness of the
Pb,Sn;_,S films, whose chemical composition was in-
vestigated by means of RBS and RUMP, is more than
830 nm. Thus, substrates can be considered to be
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smooth, because of their roughness is much smaller than
the mean thickness d of the film. By means of the pro-
gram “SurfaceXplore” we estimated values of mean thick-
ness d and standard deviation ¢ for samples 5, 7, 12, 15,
16, 17 (Table III).

TABLE IIT

Atomic composition, mean thickness value and standard
deviation of the Pb,Sn;_.S films.

The maintenance
No. | Ts [°C] of elements D [nm] | o [nm] | o/d
[at. %]

Sn 37.3

5 268 Pb 10.4 830 21.5 |0.03
S 52.3
Sn 39

7 290 Pb 7.6 900 89.7 |0.10
S 53.4
Sn 38

12 320 Pb 9.5 950 106.6 | 0.11
S 52.5
Sn 40.2

15 330 Pb 6.8 1160 379 |0.03
S 53
Sn 43.4

16 361 Pb 8.6 1680 68.7 | 0.04
S 48
Sn 39

17 382 Pb 8.3 1150 283.5 | 0.25
S 52.7

In our case the thickness variation is much smaller than
the mean film thickness. Comparing the calculated re-
sults with Mayer’s results (energy spectra for 2 MeV “He
backscattered from a smooth and rough gold layers with
mean thickness 1 x 10'® cm~2 and different roughnesses
with standard deviation o) we can conclude that only the
low energy edge of the film is affected by the roughness
and gets broader. The development of tails stretching to
low energies is negligible. In our RBS spectra, the sur-
face roughness can cause an error in evaluating elemental
composition deeply in a simulated film (in the interme-
diate layer of elements of a substrate and a coating).

The energy spectrum of 2 MeV “He backscattered
from rough Pb,Sn;_,S films deposited on glass is shown
in Fig. 5. The experimental data are not well repro-
duced by the simulated spectrum, especially the small
background. The remaining discrepancies between ex-
perimental data and simulation are mainly due to plural
scattering, which was not taken into account in the cal-
culation. The typical depth profile for one representative
sample is given in Fig. 6. The depth profiles of films
reveal relatively uniform distribution of components in
the bulk of the films through the depth. Table III con-
tains the average atomic concentrations of Pb, Sn and S
determined for the films.

The Pb,Sn;_,S films are 0.83-1.68 pm thick (at dif-
ferent temperatures). With the increase of the substrate
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Fig. 5. 2.0 MeV He' RBS spectra from PbSnS film
(sample 5) deposited at Tsup = 268°C: 1 — experimen-
tal data; 2 — simulation.
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Fig. 6. Depth distribution of species in PbSnS film
(sample 5) deposited at Tsup = 268 °C.

temperature, the thickness of a film increases, too. The
films consist of 6.8-10.4 at.% of lead, 37.3-43.4 at.%
of tin, 48.0-53.4 at.% of sulphur. Profiles of element dis-
tribution show that the obtained films are homogeneous.

The depth profiles indicate that noticeable amounts of
lead, tin, and sulphur penetrate in the depth more than
0.5 pm under the interface between the thin film and a
substrate. This means that during HWVD process the
Pb, Sn, and S atoms penetrate deeply into the glass.
The thickness of an intermediate layer is from 0.48 pm
to above 1.65 pum for different samples. As appears from
the spectra, the substrate contains silicon and oxygen
atoms. One can observe outdiffusion of elements from
the substrate into the coating.

4. Conclusions

With a help of AFM the main stages in the develop-
ment of the thin films have been investigated.
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We have proposed a possible description of the wet-
ting (or dewetting) of a rough textured surface with two
parameters: the roughness ratio k& and the part f of the
total surface area wet by the liquid. The effective contact
angle © could be calculated on such a surface, as a func-
tion of these parameters and the Young contact angle,
fixed by the chemical nature of the solid and the liquid.

The studies of the contact angle hysteresis of water
drop have been conducted in order to confirm the valid-
ity of using the Wenzel model in description of the water
wettability of Pb,Sn;_,S films. The values of the reced-
ing contact angles look almost independent of the texture
coefficient, while the value of the advancing contact an-
gle decreases with increasing texture coeflicient. Contact
angle hysteresis decreases with increasing texture coeffi-
cient.

The Pb,Sn;_,S films are 0.83-1.68 um thick (at dif-
ferent temperatures). With the increase of the substrate
temperature, the thickness of films increases, too. Pro-
files of distribution of elements show that the obtained
films are homogeneous. As appears from spectra, the
substrate includes silicon and oxygen. Mutual diffusion of
elements of a substrate (Si, O) and a coating (Pb, Sn, S)
has been observed. The thickness of an interphase layer
is from 0.48 pm to above 1.65 pym for different samples.
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