Structure and Properties of Multilayer Nanostructured Coatings TiN/MoN Depending on Deposition Conditions

A.D. Pogrebnjaka,∗, G. Abadiasb, O.V. Bondara, B.O. Postolnyia, M.O. Lisovenkoa, O.V. Kyrychenkoa, A.A. Andreevc, V.M. Beresnevd, D.A. Kolesnikove and M. Opielakf

aSumy State University, Rymskoogo-Korsakova 2, Sumy, 40007, Ukraine
bInstitute P, Université de Poitiers-CNRSENSMA, SP2MI, Téléport A 2, F60962 Chasseneuil-Futuroscope CEDEX, France
cNational Science Center, Kharkiv Institute of Physics and Technology, Akademicheslaya 1, Kharkiv, 61108, Ukraine
dKharkiv National University, maj. Nezalezhnosti 4, Kharkiv, 61022, Ukraine
eBelgorod State University, Pobedy 85, Belgorod, 308015, Russia
fInstitute of Transport, Combustion Engines and Ecology, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland

This work presents the results of TiN/MoN coatings studying. These multilayer nanostructured coatings demonstrate dependence on deposition conditions on nanometer level. The influence of nanosized monolayer thickness on structure changing and properties of nanocomposite multilayer coatings TiN/MoN was found. Multilayer TiN/MoN coatings of the total thickness from 6.8 to 8.2 µm were obtained using C-PVD method. Thicknesses of monolayers were 2, 10, 20, 40 nm. The structure of samples was studied using X-ray diffraction (Bruker D-8 Advance) in Cu Kα radiation, high resolution transmission electron microscopy with diffraction CFEI EQ Techai F200, scanning electron microscopy with energy dispersive X-ray spectroscopy (JEOL-7001F), and microhardness measurements in dependence on indenter load. Scratch tests (friction, wear, etc.) were also provided using Rockwell-C diamond indenter (CSM Revetest Instruments) with a tip radius of 200 µm. Friction and wear behavior were evaluated using ball-on-plate sliding test on a UMT-3MT tribometer (CETR, USA). With decreasing monolayer thickness the hardness value increases, and the size of nanograins reduces. The values obtained for the friction coefficient of the multilayer system is much smaller than in nanostructured coatings of TiN (nc) or MoN (nc). Annealing showed formation of a (Ti,Mo)N solid solution and small growth of nano crystals.

DOI: 10.12693/APhysPolA.125.1280
PACS: 61.46.−w, 62.20.Qp, 62.25.−g

1. Introduction

Nanocomposite materials demonstrate unique properties because of small grains size (less than 10 nm) and greater importance of the boundary zones [1]. Recently, multilayered, multicomponent and nanostructured coatings are the basis of protection products with various functionality, such as increase of hardness, wear, corrosion resistance to high-temperature oxidation, fatigue etc. [1–3]. TiN [3–5] and Mo [2, 4, 6] coatings provide wear protection (when applying them to churfish cutting tools) and in some cases they protect from corrosion.

It is known that hardness of Mo coatings is 32÷55 GPa and their deposition on cutting tools increases wear resistance several times. At the same time, TiN coatings have hardness 32 GPa and in individual cases hardness rises to 40 GPa or higher [2]. It is also known that Ti-Mo-N multilayer coatings show 2÷4 times durability increase in comparison with conventional coatings based on TiN. However, the heat resistance of these coatings is not so high. Coatings begin to oxidize and their hardness sharply decreases when temperature reached 550 ÷ 600 °C [7–10].

Therefore, the development of new nanocomposite (nanostructured) multilayer coatings based on TiN/MoN with high physical-mechanical and tribological properties and their studying are actual problems of modern materials science and solid state physics. The solving of these tasks will allow to increase protective properties range of these coatings.

In this paper, we investigate structure and properties of multilayer nanostructured coatings TiN/MoN depending on monolayer thickness and deposition conditions.

2. Experimental details

Multilayer biphasic nanostructured TiN-MoN coatings were deposited using vacuum-arc device ‘BULAT-G’, which allows deposition of nanostructured coatings in pulsed mode with variable pulse amplitude and pulse frequency.

Figure 1 shows a scheme of obtaining the required coatings. The vacuum chamber (1) is equipped with a system...
of automatic nitrogen pressure control (2) and two evaporators. One of them (3) has molybdenum mk. MCHVP as the evaporated material and the other one (5) has titantium mk. BT1-0. Substrate holder (5) is mounted on rotating chamber device as a stainless steel plate which size is of 300 × 300 mm², in the center of steel plate substrates (6) are placed. Substrates are made of stainless steel X18H9T disks of 19 mm diameter and 3 mm thickness. BULAT-6 is also equipped with dc voltage source (7), the value of which varies between 5 ÷ 1000 V, and high-voltage impulse generator (8) with adjustable voltage pulse amplitude of 0.5 ÷ 2 kV and repetition frequency 0.5 ÷ 0.7 kHz. Thickness of deposited nanosized monolayers (TiN and MoN) was about 2, 10, 20, 40 nm and total thickness was in the range from 6.8 to 8.2 µm. Process of biphase multilayer coatings deposition was carried out at pressure of 1.33 × 10⁻³ Pa and 1 kV substrate potential. Then substrate cleaning process was carried out with molybdenum ions during about elemental structure (scattering angle θ with energy 1.7 MeV was used to complete information about the composition analysis was performed using ASTM catal-

1.4 MeV based on electrostatic accelerator IAP (Sunny, Ukraine) with beam size 0.5 µm charge 3 × 10⁻¹⁰/s pixel, raster 50 × 50, scanning step 0.5 µm.

Investigation of coatings microstructure and element composition was carried out using several scanning electron-ion microscopes (Quanta 200 FE-SEM) equipped with x-ray detector system PEGASUS 2000. We also used a scanning electron microscope JEOL-7001F with microanalysis EDX (Japan). Coatings structure and phase composition were analyzed using Rutherford backscattering (RBS) on He⁺ ions with initial energy 16 keV, helium ions dose was 5 µm). Microbundle of protons (µ-PIXE) was applied with initial energy 3. Results and discussion

There is only one phase with fcc lattice (structural type NaCl) formed in coating at a low substrate potential 40 V at monolayer thickness nearby 2 nm. When substrate potential increased to −230 V, it caused formation of two-phase TiN system and high-temperature γ-Mo₂N with phase ratio TiN/MoN equal to 90/10, respectively. The appearance of a two-phase condition is an intensive ion bombardment which promotes nanograins grinding and interfaces formation. This is accompanied by separate Mo₂N layers with cubic lattice and interface formation. In turn, it leads to stress growing in the TiN phase and period increase in tence cross-section. In this case layers structure is columnar. Formation of the two-phase structural state with an average TiN and γ-Mo₂N cubic phase grade 60 vol.% and 40 vol.% occurs when monolayers thickness increases to 10 nm. These values are close to Ti and Mo concentrations (62.3 at. % and 36.8 at. %, respectively, see Fig. 2b), which were obtained by EDX.

The full cross-section of nanostructured coatings is presented in the next figure (Fig. 3a). Figure 3b shows striped TiN nanolayer — dark areas and MoN — light areas which are well recognizable at this zoom. The appearance of interface specific volume caused by high γ-Mo₂N phase level accompanied by high γ-TiN phase level is accompanied by high compressive stress.
growth in titanium nitride, it achieved maximum hardness 32 GPa (see Fig. 4a).

We wonder that only γ-Mo$_2$N phase presents in molybdenum nitride and no β-Mo$_2$N phase is formed, although both of them can be formed in case of vacuum-arc deposition. This can be explained by two-stage phase composition of multilayered nanostructured coating. At the initial growth of Mo$_2$N the determining factor is TIN lattice atomic sequence. Therefore, there is a γ-Mo$_2$N cubic modification stabilization with molybdenum nitride layer growing. This is accompanied by a macrodeformation resetting and interface formation caused by structured macrostress of relatively high thickness. Volume content of the phases accurately corresponds to the expected in according to the EDX analysis (70 at.% TiN and 30 at.% Mo$_2$N) for samples with coating thickness nearby 20 nm.

4. Conclusions

The tribological properties analysis shows that surface roughness Ra reaches the value 0.3 μm, friction coefficient varies from 0.09 to 0.12. Critical load (when coating starts to break) ranges from 425 N at monolayer thickness 40 nm, and reaches (610 ÷ 648) N at thickness 10 and 2 nm. Thus, the smaller monolayer thickness, the higher load. This shows that one nitride monolayer envelopes nanograin in the last case [11–13]. Therefore, nanostructure strength increases by grains shift prevention (slipping). According to Koehler’s model [14] the possible mechanism of hardness increasing is transfer of valence charge [15], reduction of nanograin size and mixing entropy.

The smallest wear was observed under deposition conditions for monolayers thickness 2 and 10 nm, equals 0.148 for counterbody and 2.327×10^{-5} [mm3 N$^{-1}$ mm$^{-1}$] for coating. Samples annealing during 2 h at temperature 800 °C in an oven under vacuum 10^{-2} Pa causes reducing of compressive stress and small nanograins growth to $10 \div 15\%$ (no more).

Acknowledgments

The work was performed within the framework of scientific-technical cooperation program with the University of Poitiers, as well as comprehensive state program “Development of the basis for formation of multicomponent nanostructured superhard coatings with high physical and mechanical properties” (no. 0112U001382) and “Physical principles of plasma technologies for complex processing of multicomponent materials and coatings” (no. 0113U000137c).

References

