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Modeling of Processes Taking Place during Powder Coating
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This paper considers the problem of �nding the temperature �eld in two-layer metallic materials heated by
a moving source of radiation. It describes developed by the authors numerical method for solving the problem
of heating a two-layer plate by a moving axially symmetric surface heat source with regard to the function of
distribution of the power density of the beam for which the program of computation in C++ was implemented.
The calculation results were used for selecting the optimal parameters (speed and power density of the source) of
modifying radiation of protective powder coatings on steel substrates.
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1. Introduction

The relevance of the problem of �nding the tempera-
ture �eld in two-layer metal materials heated by a mov-
ing source of radiation is conditioned by the problem
of choosing the optimal modes of modifying radiation
of protective powder coatings applied by a high-speed
plasma jet to the steel substrate. Based on a series of
experimental studies of the structure and properties of
such coatings before and after additional irradiation by
electron beam or plasma jet [1�5], we concluded that it is
necessary to simulate the temperature distribution dur-
ing irradiation to justify the choice of such irradiation
parameters as power density and the speed of the source.
The values and the distribution of temperature in the
depth from the surface heated by a source play a cru-
cial role in the precipitation of reinforcing phase particles
from the solid solution, acceleration of di�usion processes
between the coating and the substrate. Comparing the
experimental data with the temperature pro�le calcula-
tions we can o�er the best modes of radiation that do not
cause excessive heating of a coating, but at the same time
lead to changes in the phase composition (formation of
reinforcing particles) and to improvement of adhesion of
coatings to the substrate due to acceleration of di�usion
processes between the coating and the substrate.

During radiation treatment of coatings high tempera-
tures of the coating surface are achieved (the melting of
the coating surface is an often phenomenon), at that the
temperature of the substrate at a relatively small depth
increases slightly. Since the thermal properties of metals,
such as thermal conductivity and speci�c thermal capac-
itance, substantially depend on temperature, adequate
modeling of heat transfer in the processing of coatings
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by radiation leads to the solution of the non-stationary
problem of the theory of non-linear thermal conductivity.
Problems of the nonlinear theory of heat conductivity are
solved almost exclusively by numerical methods due to
the extreme di�culty of �nding analytical solutions of
emerging problems [6, 7]. From a practical point of view,
it is essential to consider the following fact: a mathemat-
ically rigorous proof of correctness of approximate meth-
ods used for solving nonlinear heat transfer problems in
most cases is not available; and so far the main crite-
rion for the suitability of one or the other approximate
method is its try-out in model problems solved by clas-
sical methods of linear theory of heat conduction. It is
clear that trying-out in model problems is also needed in
the development of software designed for the simulation
of heat transfer processes. Thus, the solution of problem
of linear thermal conductivity of heating a two-layer plate
by moving surface heat source is necessary to address a
much more challenging task of modeling of heat transfer
processes at the radiation treatment of coatings. In ad-
dition, the solution of this problem is useful for selecting
the ��rst targets� in selecting the operational parame-
ters of irradiation (power and speed of the beam), and
therefore is of separate interest.

A number of contemporary works that address the-
matically similar problems [8�14], on the one hand, show
the relevance of the problem of �nding the distribution
of temperature during irradiation by beams of charged
particles; on the other hand, show a di�erent approach
to solving the problem of heat conductivity, a nonlinear
heat conduction problem is solved by the �nite element
method (FEM). Since FEM is very sensitive to the choice
of area division, and the theoretical error estimate is very
di�cult, in practice successful application of FEM often
depends on the experience and intuition of a researcher,
and the main criterion for the plausibility of the results
is still an experiment. Experimental con�rmation of nu-
merical calculations involves great technical di�culties,
so the solution of the given model problem by classical
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methods of linear thermal conductivity, in our view, is a
necessary step in the development of a complete model
of behavior of material heated by a source of radiation.
In this paper we propose the developed numerical

method for solving the problem of heating a two-layer
plate by a moving axially symmetric surface heat source.
The following is the description of the proposed method.

2. Physical and mathematical formulation

of the problem

Since the thickness of the coating layer in which heat
is emitted during radiation processing is very small com-
pared to the thickness of the coating, we use a �at heat
source model. Because in most practical cases geometric
dimensions of the zone of intense heating are small com-
pared to the size of a sample, we simulate the substrate
by a semi-in�nite body, and the coating � by an un-
limited plate of thickness h. We introduce the Cartesian
coordinates as shown in Fig. 1 (X and Y axes are lying
in the plane of the coating surface, Z axis is pointed into
the sample). Let at the initial time t0 a �at axially sym-
metric heat source moving with velocity V directed along
the axis X be switched; and at the time t0 the axis of the
beam passes through the point (x0, 0, 0) where x0 = V t0.

Fig. 1. Schematic representation of the bilayer plate
heated by the moving �at heat source, indicating the
choice of coordinate system.

Then we come to the boundary problem of the theory
of thermal conductivity de�ned by the system of di�er-
ential equations and boundary conditions:

∂2Ti

∂x2 + ∂2Ti

∂y2 + ∂2Ti

∂z2 = 1
ai
∂Ti

∂t ,

Ti(x, y, z, t0) = 0,(
∂T1

∂z

)
z=0

= f(x, y, t),

k1
(
∂T1

∂z

)
z=h

= k2
(
∂T2

∂z

)
z=h

,

T1(x, y, h, t) = T2(x, y, h, t),

(1)

where T1(x, y, z, t) and T2(x, y, z, t) are thermal �elds in
the coating and the substrate; a1 and k1 � coe�cients of
thermal di�usivity and conductivity of the coating mate-
rial, a2 and k2 � coe�cients of thermal di�usivity and
thermal conductivity of the substrate material. The sur-
face heat source is described by the equation

f(x, y, t) = Q(r(x, y, t))ϕ(t− t0), (2)

in which, r(x, y, t) =
√

[x− x0 − V (t− t0)]2 + y2, Q(r)

� the function that describes the distribution of the
source power surface density (argument r sets the dis-
tance to the axis of the source), and φ(t) function is given
by the system

ϕ(t) =

{
0, t < 0,

1, t ≥ 0.
(3)

3. Solution method

Let a �xed �at heat source with a power density (4)
operate on the surface of the above-described composite
solid

N(r, t) = Q(r)ϕ(t− t0). (4)

If we can calculate the temperature �eld T ∗(r, z, t) (in a
cylindrical coordinate system, z axis of which coincides
with the axis of the source and is pointed into the plate)
generated by the source, we will be able to �nd the �eld of
a moving source by calculating the quadratures. Indeed,
the temperature at the sample heated moving source at
the time is determined by Eq. (5) [7]. In point of fact,
the temperature TA at the point A(x, y, z) of the sample
heated by a moving source at the time t is determined
by Eq. (5) [7]:

TA =

∫ t

t0

(
∂T∗

(√
[x−x0−u(τ−t0)]2+y2,z,τ

)
∂τ

)
dτ. (5)

To �nd the �eld T ∗(r, z, t) we consider the following
problem of thermal conductivity: there is a composite
solid, which is a semi-in�nite cylinder of radius R (a re-
gion of space de�ned by the inequalities r ≤ R, z > h),
whose material has a thermal conductivity coe�cient k2
and the coe�cient of thermal di�usivity a2, in contact
with the cylinder of radius R and height h, made of ma-
terial with thermal conductivity and thermal di�usivity
k1 and a1, respectively. At the initial time an axially
symmetric �at heat source with a surface power density
given by the function N(r, t) = Q(r)ϕ(t) starts to act
on the surface of the body; the temperature of the side
surface of the composite cylinder is maintained at zero.
The body temperature at the initial time is zero. Find
the temperature �eld of the upper cylinder de�ned by the
function T1(r, z, t) and the temperature �eld in a semi-
-in�nite cylinder � function T2(r, z, t).
We may assume that if the function Q(r) is �nite,

i.e. there is such rmax that Q(r) = 0 if r > rmax, and
rmax � R, then the solution will be a good approxi-
mation to the �eld T ∗(r, z, t − t0). We approximate the
function Q(r) by the �rst N members of its expansion in
a Fourier�Bessel with Bessel functions J0(r):

Q(r) ≈
N∑
k=0

akJ0(ζkr), (6)

where ζk = λk

R (λk � k-th root of the func-
tion J0(r)). The solution of the problem takes the

form T1 =
∑N
k=0 akT1k, T2 =

∑N
k=0 akT2k, where

functions T1k and T2k satisfy the di�erential equation
of heat conductivity ∆Tik = 1

ai
∂Tik

∂t , boundary con-

ditions k1
(
∂T1k

∂z

)
z=0

= −ϕ(t)J0(ζkr), k1
(
∂T1k

∂z

)
z=h

=
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k2
(
∂T2k

∂z

)
z=h

, T1k(r, h, t) = T2k(r, h, t), as well as

the condition T2k(r,∞, t) = 0 and initial conditions
T1k(r, z, 0) = 0 and T2k(r, z, 0) = 0. We perform
Laplace transformation with respect to the variable t,
having designated T 1k(s, r, z) =

∫∞
0
T1k(r, z, t)e−stdt

and T 2k(s, r, z) =
∫∞
0
T2k(r, z, t)e−stdt.

In the future we will denote the correspondence of
the original to the image at the Laplace transforma-
tion by the icon → , for example, T1k → T 1k. The
di�erential equations of heat conductivity for the orig-
inals pass into the equations of the eigenfunctions of the
Laplace operator ∆T 1k = s

a1
T 1k and ∆T 2k = s

a2
T 2k.

Note that the functions f(s, r, z) = J0(ζkr) exp(ηz) and

g(s, r, z) = J0(ζkr) exp(−ηz), where η =
√
ζ2k + s

a will

be the eigenfunctions of the Laplace operator with eigen-
value s

a . We look for T 1k and T 2k as

T 1k = J0(ζkr) [f1k exp(η1kz) + f2k exp(−η1kz)] , (7)

T 2k = J0(ζkr)f3k exp(−η2k(z − h)), (8)

where η1 =
√
ζ2k + s

a1
[15]. Taking into account that

ϕ(t)→ 1
s [16], the boundary conditions give a system of

equations for determining f1, f2, f3:
k1η1kf1k − k1η1kf2k = − 1

s ,

exp(hη1k)f1k + exp(−hη1k)f2k = f3k,

k1η1k exp(hη1k)f1k − k1η1k exp(−hη1k)f2k
= −k2η2kf3k,

(9)

solving which we get

f3k =
1

s(k1η1ksh(η1kh) + k2η2kch(η1kh))
, (10)

f1k =
k1η1k − k2η2k

2k1η1k
exp(−hη1k)f3k, (11)

f2k =
k1η1k + k2η2k

2k1η1k
exp(hη1k)f3k. (12)

As for the estimation of the temperature �eld of a mov-
ing source, we need not the temperature �elds T1(r, z, t)

and T2(r, z, t) as such, but their time derivatives ∂T1(r,z,t)
∂t

and ∂T2(r,z,t)
∂t , we use the property of the Laplace trans-

formation: if f(t) → F (s), then df(t)
dt → sF (s) − f(0).

From the initial conditions (11) and (12) we get the view

∂T1(r, z, t)

∂t
=

N∑
k=0

akJ0(ζkr)y1k(t), (13)

∂T2(r, z, t)

∂t
=

N∑
k=0

akJ0(ζkr)y2k(t), (14)

where

y1k(t)→ F1k exp(η1kz) + F2k exp(−η1kz), (15)

y2k(t)→ Yk exp(−η2k(z − h)), (16)

and Yk, F1k, and F2k are de�ned by the equations:

Yk =
1

k1η1ksh(η1kh) + k2η2kch(η1kh)
, (17)

F1k =
k1η1k − k2η2k

2k1η1k
exp(−hη1k)Yk, (18)

F2k =
k1η1k + k2η2k

2k1η1k
exp(hη1k)Yk. (19)

As it is known, when solving heat conductivity problems
with the use of the Laplace transformation in time the
greatest challenge is to transform the inverse transfor-
mation [15�17]. In this case, a key role is played by the
problem of �nding the original of the function (17). For
simplicity we shall omit the index k, and will take the
image Y (s) = 1

k1η1sh(η1h)+k2η2ch(η1h)
.

In fact, knowing the original of the image y(t) it is easy
to �nd y2(t) as the convolution of functions y(t) of the
original image.

G(s) = exp(−η2(z − h)), g(z, t)→ exp(−η2(z − h)).

(20)

To �nd the original of Y (s) the following method was
used: we will write Y (s) in the form

Y (s) =
1

αθ1sh(γθ1) + βθ2ch(γθ1)
, (21)

where α = k1√
a1
, β = k2√

a2
, γ = h√

a1
, θ1 =

√
ζ2ka1 + s and

θ2 =
√
ζ2ka2 + s. We introduce the function

Y ∗[s] =
1

αθ1sh(γθ1) + βθ1ch(γθ1)
(22)

and represent Y (s) in the form

Y (s) = Y ∗(s) +D(s). (23)

It can be proved that the function D(it) of a real argu-
ment t is square integrable, and because of this, it can be
regarded as the Fourier spectrum of some function d(t).
In such a case, the original image Y (s) can be found as

y(t) = y∗(t) + d(t), (24)

where y∗(t) is the original image Y ∗(s). It should
be noted that at close to each other values of coating
and substrate materials thermal conductivity coe�cients
the function Y ∗(s) accurately approximates the function
Y (s) in the right half-plane; and we can assume that
y(t) ≈ y∗(t).
The original image Y ∗(s) can be found analytically. To

do this, we represent Y ∗(s) in the form

Y ∗(s) =
1

νθ1 exp(γθ1)(1 + ε exp(−2γθ1))
, (25)

where ε = µ
ν , and put the expression 1

1+ε exp(−2γθ1) as a

sum of geometric progression. Then

Y ∗(s) =
1

ν

(
exp(−γθ1)

θ1

+

n∑
k=1

(−ε)k exp(−(2k + 1)γθ1)

θ1

)
, (26)

from which we obtain

y(t) =
1

ν

n∑
k=0

(−ε)k exp(− (2k+1)γ
4t − (2k + 1)ζ2ka1t)√

4πt
.

(27)

Thus, the original Y (s) is found as the sum of the
form (24), where the function d(t) is calculated by numer-
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ical inversion of the Fourier transform of function D(it).

4. Implementation and practical application

of the method

The method is implemented in the program for the PC
written in the C++ programming language in Microsoft
Visual Studio Express development environment.
Figure 2 provides screenshots taken during the opera-

tion of the program implementing the above method of
calculation of the thermal �eld of a moving source with
the following inputs: heat source � Gaussian distribu-
tion of surface power density; e�ective beam diameter �
10 mm; power source � 500W; speed � 4 mm/s; coating
� 300 µm thick; material � nickel; density 8900 kg/m3,
the thermal conductivity of 90.4 W/mK; speci�c heat
capacity 443 J/kg. Substrate: material � iron; density
7870 kg/m3; thermal conductivity 79.9 W/mK; speci�c
heat capacity 447.0 J/(kg K).

Fig. 2. Contour maps of temperature �eld on the bor-
der of the coating and the substrate (horizontal section).

Based on calculations of temperature pro�les for bi-
layer absorbers wherein the coating layer has been inter-
preted as nickel or cobalt, and the substrate � as iron,
we have proposed certain modes of modi�cation of pro-
tective powder Ni and Co-based coatings deposited by a
high-speed plasma jet onto the steel substrates. Justi�-
cation of interpretation of multi-component coatings on
a steel substrate by Ni�Fe and Co�Fe bilayer absorbers
is based on the data of experimental studies of structural
and phase composition of these coatings and the devel-
oped model of their structure [1, 3, 4]. We selected the
modes of further processing by a plasma jet leading to
melting of the surface layer of the coating without melt-
ing the coating to its full depth. Improved wear resis-
tance of the modi�ed coatings was achieved by reducing
the surface roughness at melting, and improved adhesion
of the coating to the substrate � by accelerating di�u-
sion processes during irradiation [1, 5]. The experimen-
tal results of the study of the structure and properties of
modi�ed by the estimated modes surfaces are con�rmed
by the two acts on production testing at the Sumy In-
stitute for Surface Modi�cation (Sumy, Ukraine) and are

in good agreement with the data of other researchers. In
particular, the papers [10, 18] experimentally proved the
formation of hardening intermetallic compounds during
coating irradiation; and the monograph [19] con�rmed
the development of radiation-induced di�usion in mate-
rials with the fcc lattice during irradiation, which leads
to heating up to temperatures we calculated.

5. Conclusions

Presented in this paper solution of the problem of lin-
ear thermal conductivity on a two-layer plate heated by a
moving surface heat source, �rstly, was used to select the
process parameters (power density and velocity of the
beam) for the process of modifying irradiation of pro-
tective powder coatings by the electron beam and by a
plasma jet. As shown in our papers [1, 2, 5], in the re-
sult of treatment according to the recommended modes
the increased product durability was achieved by melting
coating layer surface (reduction in roughness of coatings),
improved coating adhesion to the substrate (acceleration
of di�usion processes between the coating and the sub-
strate), and an increase in microhardness of the transition
layer from the substrate to the coating by precipitation
of strengthening intermetallic phases. The results con-
�rm the correctness of calculations of temperature pro-
�les and are in good agreement with the data of other
authors [10, 18, 19].
Secondly, the solution of this model problem by classi-

cal methods of linear thermal conductivity is necessary to
address a much more challenging task of modeling of heat
transfer processes in the radiation treatment of coatings
and can serve as a criterion for the suitability of one or
the other approximate method, the correctness of which
can be veri�ed using the model.
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