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In this article we investigate the electron�phonon interaction in metals in the system strongly reduced in
one dimension. The Fermi sphere which represents the free-electron structure of a bulk metal was replaced by a
discrete set of the Fermi disks. Using the variational expression for resistivity the temperature and �lm thickness
dependences of the resistivity were derived and compared with experimental data.
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1. Introduction

It is undoubtedly that the properties of bulk materials
and materials nanoscaled at least in one dimension are
di�erent. The behaviour of electrons in systems having
dimensions of the intermediate length scale has been ac-
tively studied in past few decades. Naturally the main
target of investigation and research were semiconductors,
so much important in electronics, optoelectronics, quan-
tum electronics etc. In semiconductors the carrier scat-
tering at room temperatures is dominated by the polar-
-optical-phonon scattering mechanism. Scattering rates
of carriers by longitudinal optical phonons in semicon-
ducting quantum well structures are greater than those
in the same bulk materials [1]. First studies of quan-
tum size e�ects in thin semimetallic �lms with perfect
surfaces were performed by Sandomirskii [2]. He showed
that the electrical conductivity, the Hall constant, and
magnetoresistance had an oscillating dependence as the
functions of the thickness of the �lm. More extended
work by Ashcroft and Trivedi [3] involved discreteness of
the energy levels, e�ects of impurity potentials, and sur-
face roughness. Our goal is to �nd the temperature e�ect
on the electrical resistivity of a very thin metallic layer.
We previously derived the formula for exactly two-

-dimensional metallic system [4]. We showed that at
low temperatures the electrical resistivity of bulk ma-
terial was higher than that of the two-dimensional sys-
tem and this e�ect was purely geometrical. The main
disadvantage of this model is that it is strictly two-
-dimensional and can only be treated as a �toy� model.
That is why this time we investigated more realistic quasi
two-dimensional system representing a very thin metallic
layer. Of course we used the free-electron model which
we consider to be simple and easy to handle yet it allows
us to describe basic properties of a metal.
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2. Theoretical model

For our calculations of the �lm resistivity we take a
simple particle-in-a-box model in which independent elec-
trons are con�ned by an in�nitely deep and smooth (per-
fect surfaces) potential. The phonons are taken to be
bulk ones. The eigenvalue spectrum and eigenfunctions
for such quantum well are given by

εk,τ =
~2k2

2m∗
+ ε0τ

2,

ψk,τ (r) =

√
2

V
sin

(
πτ

Lz
z

)
e ik·ρ, (1)

where k is a continuous, in-plane wave vector, τ is an
integer index of a speci�c subband, ε0 = ~2π2/2m∗L2

z is
the ground state energy, ρ is a vector in the x�y plane
and V = ALz is the volume of the �lm.

Fig. 1. Exemplary density of states S(ε) in arbitrary
units as a function of ε/ε0 for a system with the thick-
ness of 5 atomic layers.

For the eigenvalues given above the density of states
per unit energy interval per unit volume (without taking
account of the spin degeneracy) is

S(ε) =
1

4π2

√
2m∗ε0
~2

Int
(√

ε/ε0

)
, (2)

where Int denotes the integer part of the argument. The
density of states function is a step function with an en-
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Fig. 2. In a thin layer the Fermi sphere reduces to a set
of parallel disks separated by the distance π/Lz. Elec-
trons can occupy only those states included within the
disk.

velope described by three-dimensional density of states
(Fig. 1).
Consistently the Fermi sphere is reduced to a set of �at

Fermi surfaces [5�7] where electronic states are contained
within the circles of the radii kFτ (τ = 1, 2, 3 . . .). These
circles are the cross-sections of the sphere of the radius
kF and the planes perpendicular to the z-axis, separated
by the distances π/Lz (Fig. 2). The concentration of
electrons is given by

ne =
τF

2πLz

[
k2F −

π2

6L2
z

(τF + 1)(2τF + 1)

]
, (3)

which we assume to be constant, independent of �lm
thickness and equal to the bulk one, hence the Fermi
wave vector must vary to contain all the available elec-
trons. Here τF is the maximal natural number, for which
the intersection of the plane kz = τπ/Lz with the sphere
with radius kF is still possible.

3. Size and temperature dependent resistivity

We assume that the variational expression [8] for the
resistivity is still valid within our model

ρL =
1

kBT

∫∫∫
(φk − φk′)2Pk′

k,q dkdk
′dq∣∣ 1

4π3

∫
evk · uφk

∂f0
k

∂εk
dk
∣∣2 , (4)

where k, k′ � electron wave vectors before and after
scattering, respectively, q � phonon wave vector, kB �
the Boltzmann constant, T � temperature, φk � devi-
ation from equilibrium of the electron distribution func-
tion, Pk′

k,q � transition probability from the state k to

the state k′ due to electron�phonon interaction, e� elec-
tron charge, vk � electron group velocity, f0k � electron
equilibrium distribution function, εk � electron energy,
u � unit vector in the direction of external �eld.
The choice of trial function is the matter of the scat-

tering problem we would like to solve. Various trial func-
tions are used in cases of elastic scattering on impurities,
inelastic scattering on phonons and occurrence of ther-
mal gradient [9, 10]. We assume thermal equilibrium, no
thermal gradient and only phonon�electron interactions
with no impurities in the system thus we choose the trial

function to be [8, 11]:

φk = k · u. (5)

Performing simple calculations we see that the denom-
inator is then given by∣∣∣∣ 1

4π3

∫
evk · uφk

∂f0k
∂εk

d3k

∣∣∣∣2 =
(ene
~d

)2
, (6)

where d is a constant depending on the system symmetry.

The numerator in Eq. (4) is much more complex. First
we shall take care of the transition probability due to
electron�phonon interactions employing the standard for-
mula of the Fermi golden rule

Pk
′

k,q =
2π

~
|M(k, k′)|2O(εk + ~ω − εk′)n0qf

0
k(1− f0k′),

(7)

where n0q is the Bose�Einstein distribution function.

The matrix element for a particular lattice mode of
wave vector q and polarisation p takes the form

M(k, k′) =
〈
nq,p

∣∣ ∫ ψ∗k(r)Hepψk′(r)dr
∣∣nq,p − 1

〉
=

√
~nq,p

2miNV ωq

×
∑
l

e− iql

∫
ψ∗k (eq,p · ∇U(r))ψk′ dr, (8)

where mi � ion mass, N � number of unit cells per
volume. If the potential U(r) can be separated into two
parts, namely the in-plane U(x, y) and perpendicular-to-
-plane U(z):

U(r) = U(x, y) + U(z), (9)

then the integration in the matrix element expression can
be simpli�ed as follows:∫

ψ∗k(r) (eq,p · ∇U(r))ψk′(r)dr

=

∫
ψ∗k(r) (ex,y · ∇U(x, y))ψk′(r)dr, (10)

since potential U(z) corresponds to the geometrical con-
�nement and is constant along the z axis. After substi-
tuting the second of Eqs. (1) into Eq. (8), the matrix
element takes the form

M(k, k′) =

√
~nq,p

2miNV ωq
δg,k′‖−k‖−qIq,p(k‖, k

′
‖), (11)

with the factor

Iq,p(k‖, k′‖) =
∫
ϕ∗k (ex,y · ∇U(x, y))ϕk′ dxdy (12)

to be determined.

Now the �nal expression for the transition probability
is given by

Pk
′

k,q =
2π

~

(
~

2miNV ωq

)
δg,k′‖−k‖−q

∣∣∣Iq,p(k‖, k′‖)∣∣∣2
×O(εk + ~ω − εk′)n0qf0k (1− f0k′). (13)

Various mechanisms of electron�phonon scattering give
their contributions to the function Iq,p(k, k′), which can
be derived in many various ways. In every case we �nd
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that for longitudinal phonons

Iq,p(k‖, k′‖) = eq,p · (k′‖ − k‖)C(|k
′
‖ − k‖|), (14)

where C(|k′‖−k‖|) is a quantity which has the dimension

of energy and depends on the magnitude of the scattering
vector

K‖ =
∣∣∣k′‖ − k‖∣∣∣. (15)

Thus the integral in the numerator of the variational
expression for the electrical resistivity is

π

kBT

∫∫∫
(K‖ · u)2(K‖ · e)2C2(K‖)

mNωq
n0qf

0
k (1− f0k′)

×O(εk + ~ω − εk′)δg,k′‖−k‖−q d
3kd3k′d3q. (16)

First we deal with the energy conservation condition,
by integrating over the magnitude of dk′:∫

O(εk + ~ω − εk′)d3k′

=
π

Lz

1

8π3

∑
k′z

∫∫
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dεk′

~vk′
dς ′

=
π

Lz

1

8π3~
∑
k′z

∫
dς ′

vk′
. (17)

In this transformation we drop the term coming from
the rate of change of ~ω with k′. This is small, in com-
parison with the velocity of sound, and will be neglected.
Now we are left with only one integral over dk and the
integrand∫

f0k (1− f0k′)d3k =
π

Lz

1

4π3~
∑
kz

∫
dς

vk

×
∫

dεk
(e(εk−µ)/kBT + 1)(e−(εk+~ω−µ)/kBT + 1)

=
π

Lz

kBT

4π3~
∑
kz

∫
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vk

∫
dw

(ew + 1)(e−(w+t) + 1)

=
π

Lz

kBT

4π3~
t

1− e−t

∑
kz

∫
dς

vk
, (18)

where w = (εk − µ)/kBT and t = ~ω/kBT .
Putting all the partial results into the integration to-

gether and integrating over ς ′ we obtain

ρL =
~d2

64π3kBTe2n2emNv
2
F

∑
τ ′

ςτ ′

×
∑
kz

∫
(K · u)2(K‖ · e)2C2(K‖)kFτ dφ
(1− e−~ωq/kBT )(e~ωq/kBT − 1)

, (19)

where φ is the in-plane scattering angle. For N -processes
mainly the longitudinal lattice waves cause the scatter-
ing, thus vector e is parallel to q which equals K. That
is why we take their scalar product to be

(K‖ · e)2 = q2. (20)

We stated at the beginning that the thin metallic layer
is in contact with the non-conducting basis. For this
reason the phonon spectrum in the layer is the same as
the bulk phonon one. Since (K‖ · u)2 depends on the

system symmetry we can replace it by (1/d)K2. Because
only N processes take place, thus the C2 in the numerator
in Eq. (19) is independent of q and is equal to (using
deformation potential approximation):

C2(q‖) = C2(0) =
(

ne
S(εF)

)2

, (21)

where S(εF) is the density of states at the Fermi level
given by Eq. (2). To accomplish the calculations, all we
need is to �nd kFτ dφ expressed by the scattering vector q.
This can be done by using the law of cosines in the form

q2 = k′2 + k2 − 2k′k cosφ =⇒ qdq = k2Fτ sinφdφ,

q2 = k′2 + k2 − 2k′k cosφ =⇒ cosφ = 1− q2

2k2Fτ
. (22)

Finally the equation for the electrical resistivity of such
quasi-two-dimensional metallic layer is

ρL =
~d

64π3kBTe2mNv2FS
2
εF

∑
τ ′

ςτ ′

∑
kz

(23)

×
∫

q4dq

(1− e−~ωq/kBT )(e~ωq/kBT − 1)
√
1− q2L2

z

4(k2FL
2
z−τ2π2)

.

4. Results

We calculated the electrical resistivity for copper �lms
with given thickness in a range of temperature from 0 K
up to 1.5θ where θ is the Debye temperature (ca. 320 K
for copper). The results of these calculations are shown
in Fig. 3. The behaviour of the resistivity di�ers slightly
from that of bulk metal but seems to be linear at high
temperatures.

Fig. 3. Electrical resistivity of copper thin layers vs.
reduced temperature for various �lm thicknesses (inte-
gers in the �gure denote the number of the layers) and
bulk copper resistivity (solid line).

We can see in Fig. 4 that the resistivity oscillates as
the layer thickness changes. These oscillations quickly
disappear and are negligible when Lz equals to a few
lattice constants. The cause of these oscillations is the
varying density of states at the Fermi level.
What is important is that the behaviour of the resistiv-

ity shown in Fig. 4 weakly depends on the �lm thickness
and at �xed temperature only oscillates around its bulk
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Fig. 4. Electrical resistivity ρ for �xed temperature
(T = θ) vs. number of monolayers n.

value. This result is in contrast with experimental data
where the resistivity rises even several times as the thick-
ness drops down and has a �nite value for thickness of
one atomic layer [12]. If our calculations are correct, then
we suppose that the build-up in resistivity is brought on
by surface roughness and cracks that may occasionally
appear in the �lm.

5. Conclusions

In our opinion the obtained results are satisfying
within the model. In our previous calculations [4] we
observed rapid growth of resistivity up to in�nity as tem-
perature dropped down. Here this abnormal behaviour
is not observed. More importantly in Fig. 4 we observe
oscillations with layer thickness reported by various au-
thors [3, 13] although these oscillations seem to behave
in di�erent way. In Fig. 3 we can see that resistivity
for one hundred layers di�ers slightly from that obtained
for bulk copper. We think that this is a result of as-
sumption that scattering potential can be divided into
two parts, the in-plane part and perpendicular-to-plane.
That is why scattering takes place only in the plane and
not in the direction of the z axis. Additionally the square
root expression appears in the denominator of �nal for-
mula (23). Taking more realistic Coulomb-like pseudo-
-potential with screening and letting the scattering per-
pendicular to plane to happen could give us more satis-
fying results.
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