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In this article we investigate the electron—phonon interaction in metals in the system strongly reduced in
one dimension. The Fermi sphere which represents the free-electron structure of a bulk metal was replaced by a
discrete set of the Fermi disks. Using the variational expression for resistivity the temperature and film thickness
dependences of the resistivity were derived and compared with experimental data.
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1. Introduction

It is undoubtedly that the properties of bulk materials
and materials nanoscaled at least in one dimension are
different. The behaviour of electrons in systems having
dimensions of the intermediate length scale has been ac-
tively studied in past few decades. Naturally the main
target of investigation and research were semiconductors,
so much important in electronics, optoelectronics, quan-
tum electronics etc. In semiconductors the carrier scat-
tering at room temperatures is dominated by the polar-
-optical-phonon scattering mechanism. Scattering rates
of carriers by longitudinal optical phonons in semicon-
ducting quantum well structures are greater than those
in the same bulk materials [1]. First studies of quan-
tum size effects in thin semimetallic films with perfect
surfaces were performed by Sandomirskii [2]. He showed
that the electrical conductivity, the Hall constant, and
magnetoresistance had an oscillating dependence as the
functions of the thickness of the film. More extended
work by Ashcroft and Trivedi [3] involved discreteness of
the energy levels, effects of impurity potentials, and sur-
face roughness. Our goal is to find the temperature effect
on the electrical resistivity of a very thin metallic layer.

We previously derived the formula for exactly two-
-dimensional metallic system [4]. We showed that at
low temperatures the electrical resistivity of bulk ma-
terial was higher than that of the two-dimensional sys-
tem and this effect was purely geometrical. The main
disadvantage of this model is that it is strictly two-
-dimensional and can only be treated as a “toy” model.
That is why this time we investigated more realistic quasi
two-dimensional system representing a very thin metallic
layer. Of course we used the free-electron model which
we consider to be simple and easy to handle yet it allows
us to describe basic properties of a metal.
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2. Theoretical model

For our calculations of the film resistivity we take a
simple particle-in-a-box model in which independent elec-
trons are confined by an infinitely deep and smooth (per-
fect surfaces) potential. The phonons are taken to be
bulk ones. The eigenvalue spectrum and eigenfunctions
for such quantum well are given by
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where k is a continuous, in-plane wave vector, 7 is an
integer index of a specific subband, g = h*7%/2m*L? is
the ground state energy, p is a vector in the z—y plane
and V = AL, is the volume of the film.

Fig. 1. Exemplary density of states S(¢) in arbitrary
units as a function of £/go for a system with the thick-
ness of 5 atomic layers.

For the eigenvalues given above the density of states
per unit energy interval per unit volume (without taking
account of the spin degeneracy) is

5(0) = g 2ot (VeT0) 2)

where Int denotes the integer part of the argument. The
density of states function is a step function with an en-
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Fig. 2. In a thin layer the Fermi sphere reduces to a set
of parallel disks separated by the distance 7/L.. Elec-
trons can occupy only those states included within the
disk.

velope described by three-dimensional density of states
(Fig. 1).

Consistently the Fermi sphere is reduced to a set of flat
Fermi surfaces [5-7] where electronic states are contained
within the circles of the radii kp, (7 =1,2,3...). These
circles are the cross-sections of the sphere of the radius
kr and the planes perpendicular to the z-axis, separated
by the distances /L, (Fig. 2). The concentration of
electrons is given by

S N Pl S S (3)
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which we assume to be constant, independent of film
thickness and equal to the bulk one, hence the Fermi
wave vector must vary to contain all the available elec-
trons. Here 7 is the maximal natural number, for which
the intersection of the plane k, = 7w /L, with the sphere
with radius kr is still possible.

Ne

3. Size and temperature dependent resistivity

We assume that the variational expression [8] for the
resistivity is still valid within our model

ot J (P — ¢k’)27)]l§/q dkdk’dq
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where k, k' — electron wave vectors before and after

scattering, respectively, ¢ — phonon wave vector, kg —
the Boltzmann constant, 7' — temperature, ¢ — devi-
ation from equilibrium of the electron distribution func-
tion, Pf:q — transition probability from the state k to
the state k' due to electron—phonon interaction, e — elec-
tron charge, vy — electron group velocity, f,? — electron
equilibrium distribution function, e, — electron energy,
u — unit vector in the direction of external field.

The choice of trial function is the matter of the scat-
tering problem we would like to solve. Various trial func-
tions are used in cases of elastic scattering on impurities,
inelastic scattering on phonons and occurrence of ther-
mal gradient [9, 10]. We assume thermal equilibrium, no
thermal gradient and only phonon—electron interactions
with no impurities in the system thus we choose the trial
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function to be [8, 11]:
o =k -u. (5)
Performing simple calculations we see that the denom-
inator is then given by
1 fp 13 ene\?
e [ nfhan - ()"
473 / €Ok Uk hd (6)

where d is a constant depending on the system symmetry.

2

The numerator in Eq. (4) is much more complex. First
we shall take care of the transition probability due to
electron—phonon interactions employing the standard for-
mula of the Fermi golden rule

’ 2w
Prq = ~|M(k, k) *O(er + hw — ex)ng fi(1 = fi),
(7)
where n? is the Bose-Einstein distribution function.

q
The matrix element for a particular lattice mode of

wave vector q and polarisation p takes the form
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where m; — ion mass, N — number of unit cells per
volume. If the potential U(r) can be separated into two
parts, namely the in-plane U(z,y) and perpendicular-to-
-plane U(z):

U(r) =Ulz,y) + U(z), (9)
then the integration in the matrix element expression can
be simplified as follows:

[ 60 (g TUE) v ()
= [ i) (ea - VU ) ), (10)

since potential U(z) corresponds to the geometrical con-
finement and is constant along the z axis. After substi-
tuting the second of Egs. (1) into Eq. (8), the matrix
element takes the form

| hn
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with the factor
T, p(hy, ) = / i (eay - VU(2,y) o dzdy  (12)

to be determined.

Now the final expression for the transition probability
is given by

’ 2 h ’
A _ /!
P = 5 (v ) ot -hs-oTaatin )|

x O(eg + hw — ep)ng fo(1 = f0). (13)
Various mechanisms of electron—phonon scattering give
their contributions to the function Z, ,(k, k'), which can
be derived in many various ways. In every case we find
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that for longitudinal phonons
Ly p(ky, kf\) =C€qp- (kﬂ kll)c(““ﬂ — ki), (14)
where C (|sz| —kyj|) is a quantity which has the dimension

of energy and depends on the magnitude of the scattering
vector

Ky = [ &y . (15)

Thus the integral in the numerator of the variational
expression for the electrical resistivity is

(K- u)*(K) - e)’)C*(K))
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First we deal with the energy conservation condition,
by integrating over the magnitude of dk’:

/O(€k + hw — €k/)d3k/
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In this transformatlon we drop the term coming from
the rate of change of iw with k’. This is small, in com-
parison with the velocity of sound, and will be neglected.
Now we are left with only one integral over dk and the
integrand

01 p0yq3. . T 1 ds
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where w = (e, — p)/kgT and t = hw/kpT.

Putting all the partial results into the integration to-
gether and integrating over ¢’ we obtain

L = 647r3kBTe n2mNuvi Zgﬂ

T/

(K - w)*(K | - €)C* (K| ke, do
Z/ _ —hwq/‘lchT)(ehwq/lllgTFi 1)’ (19)

where ¢ is the in-plane scattering angle. For N-processes
mainly the longitudinal lattice waves cause the scatter-
ing, thus vector e is parallel to g which equals K. That
is why we take their scalar product to be

(KH . 6)2 = q2. (20)
We stated at the beginning that the thin metallic layer

is in contact with the non-conducting basis. For this
reason the phonon spectrum in the layer is the same as
the bulk phonon one. Since (K - u)? depends on the
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system symmetry we can replace it by (1/d)K?. Because
only N processes take place, thus the C? in the numerator
in Eq. (19) is independent of ¢ and is equal to (using
deformation potential approximation):

2
a0 = (575 @

where S(ep) is the density of states at the Fermi level
given by Eq. (2). To accomplish the calculations, all we
need is to find kg, d¢ expressed by the scattering vector q.
This can be done by using the law of cosines in the form

* = k? + k% — 2k'k cos ¢ = qdq = k. sin ¢do,
2

P =K*+k?>—2kkcosp = cosp =1 — 222 . (22)
Fr

Finally the equation for the electrical resistivity of such
quasi-two-dimensional metallic layer is

hd
= 7—/ 23
PL 64w3kBT62mNU%S§F§:§ 2 (23)
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4. Results

We calculated the electrical resistivity for copper films
with given thickness in a range of temperature from 0 K
up to 1.50 where 6 is the Debye temperature (ca. 320 K
for copper). The results of these calculations are shown
in Fig. 3. The behaviour of the resistivity differs slightly
from that of bulk metal but seems to be linear at high
temperatures.
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Fig. 3. Electrical resistivity of copper thin layers vs.
reduced temperature for various film thicknesses (inte-
gers in the figure denote the number of the layers) and
bulk copper resistivity (solid line).

We can see in Fig. 4 that the resistivity oscillates as
the layer thickness changes. These oscillations quickly
disappear and are negligible when L, equals to a few
lattice constants. The cause of these oscillations is the
varying density of states at the Fermi level.

What is important is that the behaviour of the resistiv-
ity shown in Fig. 4 weakly depends on the film thickness
and at fixed temperature only oscillates around its bulk
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Fig. 4. Electrical resistivity p for fixed temperature
(T = 0) vs. number of monolayers n.

value. This result is in contrast with experimental data
where the resistivity rises even several times as the thick-
ness drops down and has a finite value for thickness of
one atomic layer [12]. If our calculations are correct, then
we suppose that the build-up in resistivity is brought on
by surface roughness and cracks that may occasionally
appear in the film.

5. Conclusions

In our opinion the obtained results are satisfying
within the model. In our previous calculations [4] we
observed rapid growth of resistivity up to infinity as tem-
perature dropped down. Here this abnormal behaviour
is not observed. More importantly in Fig. 4 we observe
oscillations with layer thickness reported by various au-
thors [3, 13] although these oscillations seem to behave
in different way. In Fig. 3 we can see that resistivity
for one hundred layers differs slightly from that obtained
for bulk copper. We think that this is a result of as-
sumption that scattering potential can be divided into
two parts, the in-plane part and perpendicular-to-plane.
That is why scattering takes place only in the plane and
not in the direction of the z axis. Additionally the square
root expression appears in the denominator of final for-
mula (23). Taking more realistic Coulomb-like pseudo-
-potential with screening and letting the scattering per-
pendicular to plane to happen could give us more satis-
fying results.
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